
68291 字 | 171 分钟

⼤模型技术30讲（英⽂&中⽂批注）
⼤模型技术30讲（原版），30 Essential Questions and Answers on Machine

Learning and AI

1.背景

买了⼀本《⼤模型技术30讲》，简单阅读了下，要点突出，对于⼊⻔、加深关键

点理解，很有⽤。

但是，也存在问题 & 未满⾜的诉求：

1.《⼤模型技术30讲》纸质版 （2025年3⽉第2次印刷），印刷质量，偏差；

2.⼤部分 术语 ，都翻译为中⽂，不利于中英对⽐，特别是 AI 领域基本都是

英⽂的，需要我们熟悉 英⽂术语 。

3.希望有 电⼦版 资料，⽅便利⽤ AI ⼯具辅助理解，提升效率。

因此，找到 原始⽂档：Machine Learning Q and AI，反复消化原始信息。

然后，将原始信息，转录为 md 格式，并且，存储在 github 上。

2.项⽬介绍

本项⽬是系统性学习⼤模型技术要点的教程，基于原始的 《30 Essential

Questions and Answers on Machine Learning and AI》 ，进⾏中⽂批注，增强可

读性。

2.1.你将收获什么？

1. 系统性学习：⼤模型技术要点的教程

2. 熟悉核⼼的术语（英⽂ + 中⽂）

3. 共同维护，中⽂批注，增强可读性，贡献给开源社区

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 1 页，共 239 页

https://sebastianraschka.com/books/ml-q-and-ai/
https://github.com/ningg/Machine-Learning-Q-and-AI

2.2.迭代计划

1. ⾸版：中⽂标注: ✅

2. 导出 pdf ⽂件: ✅

3. 同步到多个开源社区: TODO

3.在线阅读

在线阅读： 《⼤模型技术30讲》 ，pdf ⽂件： 《⼤模型技术30讲-PDF版本》

深⼊理解 LLM 核⼼原理，直击要点

4.如何贡献

我们欢迎任何形式的贡献！

🐛 报告 Bug - 发现问题请提交 Issue

💡 功能建议 - 有好想法就告诉我们

📝 内容完善 - 帮助改进教程内容

Note: 后续资料会附上贡献者名单.

30 Essential Questions and Answers on
Machine Learning and AI

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 2 页，共 239 页

https://ningg.top/Machine-Learning-Q-and-AI/
https://ningg.top/Machine-Learning-Q-and-AI/pdf/%E5%A4%A7%E6%A8%A1%E5%9E%8B%E6%8A%80%E6%9C%AF30%E8%AE%B2(%E8%8B%B1%E6%96%87&%E4%B8%AD%E6%96%87%E6%89%B9%E6%B3%A8)_LLM_30_Essential_Lectures_AI.pdf
https://github.com/ningg/Machine-Learning-Q-and-AI/issues
https://github.com/ningg/Machine-Learning-Q-and-AI

Machine learning and AI are moving at a rapid pace. Researchers and

practitioners are constantly struggling to keep up with the breadth of

concepts and techniques. This book provides bite-sized bits of knowledge

for your journey from machine learning beginner to expert, covering topics

from various machine learning areas. Even experienced machine learning

researchers and practitioners will encounter something new that they can

add to their arsenal of techniques.

What People Are Saying

"Sebastian has a gift for distilling complex, AI-related topics into practical

takeaways that can be understood by anyone. His new book, Machine

Learning Q and AI, is another great resource for AI practitioners of any

level."? ""Cameron R. Wolfe, Writer of Deep (Learning) Focus

"Sebastian uniquely combines academic depth, engineering agility, and the

ability to demystify complex ideas. He can go deep into any theoretical

topics, experiment to validate new ideas, then explain them all to you in

simple words. If you're starting your journey into machine learning,

Sebastian is your guide."? ""Chip Huyen, Author of Designing Machine

Learning Systems

"One could hardly ask for a better guide than Sebastian, who is, without

exaggeration, the best machine learning educator currently in the field. On

each page, Sebastian not only imparts his extensive knowledge but also

shares the passion and curiosity that mark true expertise."? ""Chris Albon,

Director of Machine Learning, The Wikimedia Foundation

"Sebastian Raschka's new book, Machine Learning Q and AI, is a one-stop

shop for overviews of crucial AI topics beyond the core covered in most

introductory courses"¦If you have already stepped into the world of AI via

deep neural networks, then this book will give you what you need to locate

and understand the next level."? ""Ronald T. Kneusel, author of How AI

Works

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 3 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Table of Contents
Introduction

Part I: Neural Networks and Deep Learning

Chapter 1: Embeddings, Latent Space, and Representations

Chapter 2: Self-Supervised Learning

Chapter 3: Few-Shot Learning

Chapter 4: The Lottery Ticket Hypothesis

Chapter 5: Reducing Overfitting with Data

Chapter 6: Reducing Overfitting with Model Modifications

Chapter 7: Multi-GPU Training Paradigms

Chapter 8: The Success of Transformers

Chapter 9: Generative AI Models

Chapter 10: Sources of Randomness

Part II: Computer Vision

Chapter 11: Calculating the Number of Parameters

Chapter 12: Fully Connected and Convolutional Layers

Chapter 13: Large Training Sets for Vision Transformers

Part III: Natural Language Processing

Chapter 14: The Distributional Hypothesis

Chapter 15: Data Augmentation for Text

Chapter 16: Self-Attention

Chapter 17: Encoder- and Decoder-Style Transformers

Chapter 18: Using and Fine-Tuning Pretrained Transformers

Chapter 19: Evaluating Generative Large Language Models

Part IV: Production and Deployment

Chapter 20: Stateless and Stateful Training

Chapter 21: Data-Centric AI

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 4 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 22: Speeding Up Inference

Chapter 23: Data Distribution Shifts

Part V: Predictive Performance and Model
Evaluation

Chapter 24: Poisson and Ordinal Regression

Chapter 25: Confidence Intervals

Chapter 26: Confidence Intervals vs. Conformal Predictions

Chapter 27: Proper Metrics

Chapter 28: The k in k-Fold Cross-Validation

Chapter 29: Training and Test Set Discordance

Chapter 30: Limited Labeled Data

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 5 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Introduction
Thanks to rapid advancements in deep learning, we have seen a significant

expansion of machine learning and AI in recent years.

This progress is exciting if we expect these advancements to create new

industries, transform existing ones, and improve the quality of life for people

around the world. On the other hand, the constant emergence of new techniques

can make it challenging and time-consuming to keep abreast of the latest

developments. Nonetheless, staying current is essential for professionals and

organizations that use these technologies.

I wrote this book as a resource for readers and machine learning practitioners

who want to advance their expertise in the field and learn about techniques that I

consider useful and significant but that are often overlooked in traditional and

introductory textbooks and classes. I hope you'll find this book a valuable

resource for obtaining new insights and discovering new techniques you can

implement in your work.

Tips: 本书会突出 核⼼概念 ，并且，会给出 示例 ，辅助理解。

Who Is This Book For?
Navigating the world of AI and machine learning literature can often feel like

walking a tightrope, with most books positioned at either end: broad beginner's

introductions or deeply mathematical treatises. This book illustrates and

discusses important developments in these fields while staying approachable and

not requiring an advanced math or coding background.

Tips: 本书，并不要求读者有⾼等数学知识、也⽆需编码背景。简单来说，

普通的⾼中毕业，也可以流畅阅读。

This book is for people with some experience with machine learning who want to

learn new concepts and techniques. It's ideal for those who have taken a beginner

course in machine learning or deep learning or have read an equivalent

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 6 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

introductory book on the topic. (Throughout this book, I will use machine learning

as an umbrella term for machine learning, deep learning, and AI.)

本书中，会使⽤ 机器学习 作为 统称 ，包括机器学习、深度学习、AI。

What Will You Get Out of This Book?
This book adopts a unique Q&A style, where each brief chapter is structured

around a central question related to fundamental concepts in machine learning,

deep learning, and AI. Every question is followed by an explanation, with several

illustrations and figures, as well as exercises to test your understanding. Many

chapters also include references for further reading. These bite-sized nuggets of

information provide an enjoyable jumping-off point on your journey from

machine learning beginner to expert.

The book covers a wide range of topics. It includes new insights about established

architectures, such as convolutional networks, that allow you to utilize these

technologies more effectively. It also discusses more advanced techniques, such

as the inner workings of large language models (LLMs) and vision transformers.

Even experienced machine learning researchers and practitioners will encounter

something new to add to their arsenal of techniques.

Tips: 本书，会介绍 AI 领域 的典型概念、知识，但不是数学或编码书籍。

阅读时，⽆需证明或编码、突出易读性。

While this book will expose you to new concepts and ideas, it's not a math or

coding book. You won't need to solve any proofs or run any code while reading. In

other words, this book is a perfect travel companion or something you can read

on your favorite reading chair with your morning coffee or tea.

How to Read This Book
Each chapter of this book is designed to be self-contained, offering you the

freedom to jump between topics as you wish. When a concept from one chapter is

explained in more detail in another, I've included chapter references you can

follow to fill in gaps in your understanding.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 7 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

本书每个章节，都是独⽴的，你可以跳过⼀些章节，直接阅读你感兴趣的章

节。

However, there's a strategic sequence to the chapters. For example, the early

chapter on embeddings sets the stage for later discussions on self-supervised

learning and few-shot learning. For the easiest reading experience and the most

comprehensive grasp of the content, my recommendation is to approach the book

from start to finish.

然⽽，本书的章节，是有 顺序 的，建议从前往后阅读；因为，把 最通⽤的

概念 ，放在了最前章节。

Each chapter is accompanied by optional exercises for readers who want to test

their understanding, with an answer key located at the end of the book. In

addition, for any papers referenced in a chapter or further reading on that

chapter's topic, you can find the complete citation information in that chapter's

"References" section.

The book is structured into five main parts centered on the most important topics

in machine learning and AI today.

整体内容，分为 5 个部分，都是 AI 领域 的 最重要的主题 。

Tips: 下⾯第⼀部分，是 神经⽹络 和 深度学习 的 通⽤概念 ，包含 嵌⼊、⾃

监督学习、少样本学习、彩票假设、过拟合、多 GPU 训练范式等。

Part I: Neural Networks and Deep Learning covers questions about deep neural

networks and deep learning that are not specific to a particular subdomain. For

example, we discuss alternatives to supervised learning and techniques for

reducing overfitting, which is a common problem when using machine learning

models for real-world problems where data is limited.

Chapter [ch01]: Embeddings, Latent Space, and Representations

Delves into the distinctions and similarities between embedding vectors, latent

vectors, and representations. Elucidates how these concepts help encode

information in the context of machine learning.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 8 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter [ch02]: Self-Supervised Learning

Focuses on self-supervised learning, a method that allows neural networks to

utilize large, unlabeled datasets in a supervised manner.

Chapter [ch03]: Few-Shot Learning

Introduces few-shot learning, a specialized supervised learning technique tailored

for small training datasets.

Chapter [ch04]: The Lottery Ticket Hypothesis

Explores the idea that randomly initialized neural networks contain smaller,

efficient subnetworks.

Chapter [ch05]: Reducing Overfitting with Data

Addresses the challenge of overfitting in machine learning, discussing strategies

centered on data augmentation and the use of unlabeled data to reduce

overfitting.

Chapter [ch06]: Reducing Overfitting with Model Modifications

Extends the conversation on overfitting, focusing on model-related solutions like

regularization, opting for simpler models, and ensemble techniques.

Chapter [ch07]: Multi-GPU Training Paradigms

Explains various training paradigms for multi-GPU setups to accelerate model

training, including data and model parallelism.

Chapter [ch08]: The Success of Transformers

Explores the popular transformer architecture, highlighting features like attention

mechanisms, parallelization ease, and high parameter counts.

Chapter [ch09]: Generative AI Models

Provides a comprehensive overview of deep generative models, which are used to

produce various media forms, including images, text, and audio. Discusses the

strengths and weaknesses of each model type.

Chapter [ch10]: Sources of Randomness

Addresses the various sources of randomness in the training of deep neural

networks that may lead to inconsistent and non-reproducible results during both

training and inference. While randomness can be accidental, it can also be

intentionally introduced by design.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 9 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips: 下⾯第⼆部分，是 计算机视觉 的 典型概念 ，包含 卷积神经⽹络、视觉

变换器。

Part II: Computer Vision focuses on topics mainly related to deep learning but

specific to computer vision, many of which cover convolutional neural networks

and vision transformers.

Chapter [ch11]: Calculating the Number of Parameters

Explains the

procedure for determining the parameters in a convolutional neural network,

which is useful for gauging a model's storage and memory

requirements.

Chapter [ch12]: Fully Connected and Convolutional Layers

Illustrates the circumstances in which convolutional layers can seamlessly replace

fully connected layers, which can be useful for hardware optimization or

simplifying implementations.

Chapter [ch13]: Large Training Sets for Vision Transformers

Probes the rationale behind vision transformers requiring more extensive training

sets compared to conventional convolutional neural networks.

Tips: 下⾯第三部分，⽂本相关，是 ⾃然语⾔处理 的 典型概念 ，包含 分布式

假设、数据增强、⾃注意⼒、编码器-解码器式变换器、使⽤和微调预训练

变换器、评估⽣成式⼤语⾔模型等。

Part III: Natural Language Processing covers topics around working with text,

many of which are related to transformer architectures and self-attention.

Chapter [ch14]: The Distributional Hypothesis

Delves into the distributional hypothesis, a linguistic theory suggesting that words

appearing in the same contexts tend to possess similar meanings, which has

useful implications for training machine learning models.

Chapter [ch15]: Data Augmentation for Text

Highlights the significance of data augmentation for text, a technique used to

artificially increase dataset sizes, which can help with improving model

performance.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 10 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter [ch16]: Self-Attention

Introduces self-attention, a mechanism allowing each segment of a neural

network's input to refer to other parts. Self-attention is a key mechanism in

modern large language models.

Chapter [ch17]: Encoder- and Decoder-Style Transformers

Describes the nuances of encoder and decoder transformer architectures and

explains which type of architecture is most useful for each language processing

task.

Chapter [ch18]: Using and Fine-Tuning Pretrained Transformers

Explains different methods for fine-tuning pretrained large language models and

discusses their strengths and weaknesses.

Chapter [ch19]: Evaluating Generative Large Language Models

Lists prominent evaluation metrics for language models like Perplexity, BLEU,

ROUGE, and BERTScore.

Tips: 下⾯第四部分，是 ⽣产 和 部署 的 典型概念 ，包含 ⽆状态和有状态

训练、数据分布偏移等。

Part IV: Production and Deployment covers questions pertaining to practical

scenarios, such as increasing inference speeds and various types of distribution

shifts.

Chapter [ch20]: Stateless and Stateful Training

Distinguishes between stateless and stateful training methodologies used in

deploying models.

Chapter [ch21]: Data-Centric AI

Explores data-centric AI, which priori-

 tizes refining datasets to enhance model performance. This approach contrasts

with the conventional model-centric approach, which emphasizes improving

model architectures or methods.

Chapter [ch22]: Speeding Up Inference

Introduces techniques to enhance the speed of model inference without tweaking

the model's architecture or compromising accuracy.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 11 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter [ch23]: Data Distribution Shifts

Post-deployment, AI models

may face discrepancies between training data and real-world data distributions,

known as data distribution shifts. These shifts can deteriorate model performance.

This chapter categorizes and elaborates on common shifts like covariate shift,

concept drift, label shift, and domain shift.

Tips: 下⾯第五部分，是 预测性能 和 模型评估 的 典型概念 ，包含 泊松回

归、置信区间、置信区间与⼀致性预测、交叉验证、训练和测试集不⼀致、

有限标签数据等。

Part V: Predictive Performance and Model Evaluation dives deeper into various

aspects of squeezing out predictive performance, such as changing the loss

function, setting up k-fold cross-validation, and dealing with limited labeled data.

Chapter [ch24]: Poisson and Ordinal Regression

Highlights the differences between Poisson and ordinal regression. Poisson

regression is suitable for count data that follows a Poisson distribution, like the

number of colds contracted on an airplane. In contrast, ordinal regression caters

to ordered categorical data without assuming equidistant categories, such as

disease severity.

Chapter [ch25]: Confidence Intervals

Delves into methods for constructing confidence intervals for machine learning

classifiers. Reviews the purpose of confidence intervals, discusses how they

estimate unknown population parameters, and introduces techniques such as

normal approximation intervals, bootstrapping, and retraining with various

random seeds.

Chapter [ch26]: Confidence Intervals vs. Conformal Predictions

Discusses the distinction between confidence intervals and conformal predictions

and describes the latter as a tool for creating prediction intervals that cover actual

outcomes with specific probability.

Chapter [ch27]: Proper Metrics

Focuses on the essential properties of a proper metric in mathematics and

computer science. Examines whether commonly used loss functions in machine

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 12 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

learning, such as mean squared error and cross-entropy loss, satisfy these

properties.

Chapter [ch28]: The k in k-Fold Cross-Validation

Explores the role of the k in k-fold cross-validation and provides insight into the

advantages and disadvantages of selecting a large k.

Chapter [ch29]: Training and Test Set Discordance

Addresses the scenario where a model performs better on a test dataset than the

training dataset. Offers strategies to discover and address discrepancies

 between training and test datasets, introducing the concept of adversarial

validation.

Chapter [ch30]: Limited Labeled Data

Introduces various techniques to enhance model performance in situations where

data is limited. Covers data labeling, bootstrapping, and paradigms such as

transfer learning, active learning, and multimodal learning.

Online Resources
I've provided optional supplementary materials on GitHub with code examples for

certain chapters to enhance your learning experience (see

https://github.com/rasbt/MachineLearning-QandAI-book). These materials are

designed as practical extensions and deep dives into topics covered in the book.

You can use them alongside each chapter or explore them after reading to solidify

and expand your knowledge.

Without further ado, let's dive in.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 13 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 1: Embeddings, Latent Space,
and Representations
In deep learning, we often use the terms embedding vectors, representations,

and latent space. What do these concepts have in common, and how do they

differ?

While these three terms are often used interchangeably, we can make subtle

distinctions between them:

Embedding vectors are representations of input data where similar items

are close to each other.

Latent vectors are intermediate representations of input data.

Representations are encoded versions of the original input.

The following sections explore the relationship between embeddings, latent

vectors, and representations and how each functions to encode information in

machine learning contexts.

Embeddings
Embedding vectors, or embeddings for short, encode relatively high-dimensional

data into relatively low-dimensional vectors.

Tips: 嵌⼊向量，简称 嵌⼊ ，是输⼊数据的⼀种表示形式，相似的输⼊、

对应的嵌⼊向量 彼此接近 ；通常，将⾼维数据，转换为低维嵌⼊向量。

We can apply embedding methods to create a continuous dense (non-sparse)

vector from a (sparse) one-hot encoding.

One-hot encoding is a method used to represent categorical data as binary

vectors, where each category is mapped to a vector containing 1 in the position

corresponding to the category's index, and 0 in all other positions.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 14 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

This ensures that the categorical values are represented in a way that certain

machine learning algorithms can process. For example, if we have a categorical

variable Color with three categories, Red, Green, and Blue, the one-hot encoding

would represent Red as [1, 0, 0], Green as [0, 1, 0], and Blue as [0, 0, 1]. These one-

hot encoded categorical variables can then be mapped into continuous

embedding vectors by utilizing the learned weight matrix of an embedding layer

or module.

We can also use embedding methods for dense data such as images. For example,

the last layers of a convolutional neural network may yield embedding vectors, as

illustrated in Figure 1.1 .

Figure 1.1

To be technically correct, all intermediate layer outputs of a neural network could

yield embedding vectors. Depending on the training objective, the output layer

may also produce useful embedding vectors. For the sake of simplicity, the

convolutional neural network in Figure 1.1

Embeddings can have higher or lower numbers of dimensions than the original

input. For instance, using embeddings methods for extreme expression, we can

encode data into two-dimensional dense and continuous representations for

visualization purposes and clustering analysis, as illustrated in Figure 1.2.

Figure 1.2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 15 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

A fundamental property of embeddings is that they encode distance or similarity.

This means that embeddings capture the semantics of the data such that similar

inputs are close in the embeddings space.

Tips: 嵌⼊向量，具有⼀个重要的性质，即编码 距离相近 或 相似性 。这意

味着嵌⼊向量能够捕捉数据的语义，使得相似的输⼊在嵌⼊空间中彼此接

近。这也称为 结构保持 structure-preserving 特性。

For readers interested in a more formal explanation using mathematical

terminology, an embedding is an injective and structure-preserving

map between an input space X and the embedding space Y. This implies that

similar inputs will be located at points in close proximity within the embedding

space, which can be seen as the "structure-preserving"? characteristic of the

embedding.

Tips: 嵌⼊向量，是输⼊空间 X 和嵌⼊空间 Y 之间的⼀个单向和结构保持映

射。这意味着相似的输⼊，在嵌⼊空间中彼此接近，这就是 结构保持 特

性。

Latent Space
Latent space is typically used synonymously with embedding space, the space

into which embedding vectors are mapped.

Similar items can appear close in the latent space; however, this is not a strict

requirement. More loosely, we can think of the latent space as any feature space

that contains features, often compressed versions of the original input features.

These latent space features can be learned by a neural network, such as an

autoencoder that reconstructs input images, as shown in Figure 1.3.

Figure 1.3

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 16 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

The bottleneck in Figure 1.3 represents a small, intermediate neural network layer

that encodes or maps the input image into a lower-dimensional representation.

We can think of the target space of this mapping as a latent space. The training

objective of the autoencoder is to reconstruct the input image, that is, to minimize

the distance between the input and output images. In order to optimize the

training objective, the autoencoder may learn to place the encoded features of

similar inputs (for example, pictures of cats) close to each other in the latent

space, thus creating useful embedding vectors where similar inputs are close in

the embedding (latent) space.

Representation
A representation is an encoded, typically intermediate form of an input. For

instance, an embedding vector or vector in the latent space is a representation of

the input, as previously discussed. However, representations can also be

produced by simpler procedures. For example, one-hot encoded vectors are

considered representations of an input.

The key idea is that the representation captures some essential features or

characteristics of the original data to make it useful for further analysis or

processing.

Tips: 表示/表征 representation，是输⼊的⼀种编码形式，通常是中间形

式。关键点是，它能够捕捉输⼊的⼀些 本质特征 或 特性 ，可⽤于后续分

析。

Exercises
1-1. Suppose we're training a convolutional network with five convolutional layers

followed by three fully connected (FC) layers, similar to AlexNet

(https://en.wikipedia.org/wiki/AlexNet), as illustrated in Figure 1.4.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 17 页，共 239 页

https://en.wikipedia.org/wiki/AlexNet
https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 1.4

We can think of these fully connected layers as two hidden layers and an output

layer in a multilayer perceptron. Which of the neural network layers can be

utilized to produce useful embeddings? Interested readers can find more details

about the AlexNet architecture and implementation in the original publication by

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton.

1-2. Name some types of input representations that are not embeddings.

References
The original paper describing the AlexNet architecture and implementation:

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, "ImageNet Classification

with Deep Convolutional Neural Networks"? (2012),

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 18 页，共 239 页

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 2: Self-Supervised Learning
What is self-supervised learning, when is it useful, and what are the main

approaches to implementing it?

Self-supervised learning is a pretraining procedure that lets neural networks

leverage large, unlabeled datasets in a supervised fashion. This chapter compares

self-supervised learning to transfer learning, a related method for pretraining

neural networks, and discusses the practical applications of self-supervised

learning. Finally, it outlines the main categories of self-supervised learning.

Tips: ⾃监督学习，是⼀种预训练⽅法，让神经⽹络利⽤ ⽆标签 的⼤数据

集，进⾏ 监督学习 。

Self-Supervised Learning vs. Transfer
Learning
Self-supervised learning is related to transfer learning , a technique in which

a model pretrained on one task is reused as the starting point for a model on a

second task. For example, suppose we are interested in training an image

classifier to classify bird species. In transfer learning, we would pretrain a

convolutional neural network on the ImageNet dataset, a large, labeled image

dataset with many different categories, including various objects and animals.

After pretraining on the general ImageNet dataset, we would take that pretrained

model and train it on the smaller, more specific target dataset that contains the

bird species of interest. (Often, we just have to change the class-specific output

layer, but we can otherwise adopt the pretrained network as is.)

Figure 2.1 illustrates the process of transfer learning.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 19 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 2.1

Tips: ⾃监督学习，与 迁移学习 是相关的。

相同点在于，都是使⽤ 预训练 的模型，然后进⾏ 微调 。

差异在于，迁移学习是使⽤ 有标签 的数据，⽽⾃监督学习使⽤ ⽆标签

的数据。

Self-supervised learning is an alternative approach to transfer learning in which

the model is pretrained not on labeled data but on unlabeled data. We consider

an unlabeled dataset for which we do not have label information, and then we

find a way to obtain labels from the dataset's structure to formulate a prediction

task for the neural network, as illustrated in Figure 2.2. These self-supervised

training tasks are also called pretext tasks.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 20 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 2.2

The main difference between transfer learning and self-supervised learning lies in

how we obtain the labels during step 1 in Figures 2.1 and 2.2. In transfer learning,

we assume that the labels are provided along with the dataset; they are typically

created by human labelers. In self-supervised learning, the labels can be directly

derived from the training examples.

Tips: ⾃监督学习中，数据集的标签，可以 直接 从训练样本中 推导 出来。

A self-supervised learning task could be a missing-word prediction in a natural

language processing context. For example, given the sentence "It is beautiful and

sunny outside,"? we can mask out the word sunny, feed the network the input "It

is beautiful and [MASK] outside,"? and have the network predict the missing word

in the "[MASK]"? location. Similarly, we could remove image patches in a

computer vision context and have the neural network fill in the blanks. These are

just two examples of self-supervised learning tasks; many more methods and

paradigms for this type of learning exist.

In sum, we can think of self-supervised learning on the pretext task as

representation learning. We can take the pretrained model to fine-tune it on the

target task (also known as the downstream task).

Leveraging Unlabeled Data

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 21 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Large neural network architectures require large amounts of labeled data to

perform and generalize well. However, for many problem areas, we don't have

access to large labeled datasets. With self-supervised learning, we can leverage

unlabeled data. Hence, self-supervised learning is likely to be useful when

working with large neural networks and with a limited quantity of labeled training

data.

Transformer-based architectures that form the basis of LLMs and vision

transformers are known to require self-supervised learning for pretraining to

perform well.

For small neural network models such as multilayer perceptrons with two or three

layers, self-supervised learning is typically considered neither useful nor

necessary.

Tips: 对于 ⼩型 的神经⽹络模型，如具有两到三层的 多层感知器 ，⾃监督

学习 在这种情况下 不实⽤ 也 不必要 。

Self-supervised learning likewise isn't useful in traditional machine learning with

nonparametric models such as tree-based random forests or gradient boosting.

Conventional tree-based methods do not have a fixed parameter structure (in

contrast to the weight matrices, for example). Thus, conventional tree-based

methods are not capable of transfer learning and are incompatible with self-

supervised learning.

Tips: 对于 ⾮参数模型 ，如基于树的随机森林或梯度提升， ⾃监督学习 通常

不适⽤。

传统的基于树的⽅法没有固定的参数结构（与权重矩阵相⽐），因此传统的

基于树的⽅法⽆法进⾏迁移学习，也不兼容⾃监督学习。

FIXME 没理解???

Self-Prediction and Contrastive Self-
Supervised Learning

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 22 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

There are two main categories of self-supervised learning: self-prediction

and contrastive self-supervised learning. In self-prediction, illustrated in

Figure 2.3, we typically change or hide parts of the input and train the model to

reconstruct the original inputs, such as by using a perturbation mask that

obfuscates certain pixels in an image.

Figure 2.3

A classic example is a denoising autoencoder that learns to remove noise from an

input image. Alternatively, consider a masked autoencoder that reconstructs the

missing parts of an image, as shown in Figure 2.4.

Figure 2.4

Missing (masked) input self-prediction methods are also commonly used in

natural language processing contexts. Many generative LLMs, such as GPT, are

trained on a next-word prediction pretext task (GPT will be discussed at greater

length in Chapters [ch14] and [ch17]. Here, we feed the network text fragments,

where it has to predict the next word in the sequence (as we'll discuss further in

Chapter [ch17]).

In contrastive self-supervised learning, we train the neural network to learn an

embedding space where similar inputs are close to each other and dissimilar

inputs are far apart. In other words, we train the network to produce embeddings

that minimize the distance between similar training inputs and maximize the

distance between dissimilar training examples.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 23 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Let's discuss contrastive learning using concrete example inputs. Suppose we

have a dataset consisting of random animal images. First, we draw a random

image of a cat (the network does not know the label, because we assume that the

dataset is unlabeled). We then augment, corrupt, or perturb this cat image, such

as by adding a random noise layer and cropping it differently, as shown in Figure

2.5.

Figure 2.5

The perturbed cat image in this figure still shows the same cat, so we want the

network to produce a similar embedding vector. We also consider a random image

drawn from the training set (for example, an elephant, but again, the network

doesn't know the label).

For the cat-elephant pair, we want the network to produce dissimilar embeddings.

This way, we implicitly force the network to capture the image's core content

while being somewhat agnostic to small differences and noise. For example, the

simplest form of a contrastive loss is the -norm (Euclidean distance) between

the embeddings produced by model . Let's say we update the model

weights to decrease the distance and increase the

distance .

Figure 2.6 summarizes the central concept behind contrastive learning for

the perturbed image scenario. The model is shown twice, which is known as a

siamese network setup. Essentially, the same model is utilized in two instances:

first, to generate the embedding for the original training example, and second, to

produce the embedding for the perturbed version of the sample.

L 2

M(⋅)
∣∣M(cat) − M(cat)∣∣

′
2

∣∣M(cat) − M(elephant)∣∣ 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 24 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 2.6

This example outlines the main idea behind contrastive learning, but many

subvariants exist. Broadly, we can categorize these into sample contrastive and

dimension contrastive methods. The elephant-cat example in Figure 2.6 illustrates

a sample contrastive method, where we focus on learning embeddings to

minimize and maximize distances between training pairs. In dimension-

contrastive approaches, on the other hand, we focus on making only certain

variables in the embedding representations of similar training pairs appear close

to each other while maximizing the distance of others.

Tips: 对⽐学习，可以分为 样本对⽐ 和 维度对⽐ 两种⽅法。

样本对⽐，关注于学习嵌⼊，以最⼩化/最⼤化 训练对 之间的距离。

维度对⽐，关注于使相似 训练对 中的某些变量接近，同时最⼤化其他变

量的距离。

Exercises
2-1. How could we apply self-supervised learning to video data?

2-2. Can self-supervised learning be used for tabular data represented as rows and

columns? If so, how could we approach this?

References
For more on the ImageNet dataset: https://en.wikipedia.org/wiki/ImageNet.

An example of a contrastive self-supervised learning method: Ting Chen et al.,

"A Simple Framework for Contrastive Learning of Visual Representations"?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 25 页，共 239 页

https://en.wikipedia.org/wiki/ImageNet
https://github.com/ningg/Machine-Learning-Q-and-AI

(2020), https://arxiv.org/abs/2002.05709.

An example of a dimension-contrastive method: Adrien Bardes, Jean Ponce,

and Yann LeCun, "VICRegL: Self-Supervised Learning of Local Visual Features"?

(2022), https://arxiv.org/abs/2210.01571.

If you plan to employ self-supervised learning in practice: Randall Balestriero

et al., "A Cookbook of Self-Supervised Learning"? (2023),

https://arxiv.org/abs/2304.12210.

A paper proposing a method of transfer learning and self-supervised learning

for relatively small multilayer perceptrons on tabular datasets: Dara Bahri et

al., "SCARF: Self-Supervised Contrastive Learning Using Random Feature

Corruption"? (2021), https://arxiv.org/abs/2106.15147.

A second paper proposing such a method: Roman Levin et al., "Transfer

Learning with Deep Tabular Models"? (2022), https://arxiv.org/abs/

2206.15306.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 26 页，共 239 页

https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2210.01571
https://arxiv.org/abs/2304.12210
https://arxiv.org/abs/2106.15147
https://arxiv.org/abs/2206.15306
https://arxiv.org/abs/2206.15306
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 3: Few-Shot Learning
What is few-shot learning? How does it differ from the conventional training

procedure for supervised learning?

Few-shot learning is a type of supervised learning for small training sets with a

very small example-to-class ratio. In regular supervised learning, we train models

by iterating over a training set where the model always sees a fixed set of

classes. In few-shot learning, we are working on a support set from which we

create multiple training tasks to assemble training episodes, where each training

task consists of different classes.

Tips:

⼩样本学习，关注于学习模型，以适应新的任务。

在传统的监督学习中，我们通过迭代训练集来训练模型，模型总是看到

固定的类集。

在⼩样本学习中，我们从⼀个 ⽀持集 开始，创建 多个训练任务 来组装

训练集，每个训练任务包含不同的分类。

Datasets and Terminology
In supervised learning, we fit a model on a training dataset and evaluate it

on a test dataset . The training set typically contains a relatively large

number of examples per class. For example, in a supervised learning context, the

Iris dataset, which has 50 examples per class, is considered a tiny dataset. For

deep learning models, on the other hand, even a dataset like MNIST that has 5,000

training examples per class is considered very small.

In few-shot learning , the number of examples per class is much smaller.

When specifying the few-shot learning task, we typically use the term N-way K-

shot, where

N stands for the number of classes

and K stands for the number of examples per class.

The most common values are K = 1 or K = 5. For instance, in a 5-way 1-shot

problem, there are five classes with only one example each. Figure 3.1 depicts a 3-

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 27 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

way 1-shot setting to illustrate the concept with a smaller example.

Figure 3.1

Rather than fitting the model to the training dataset, we can think of few-shot

learning as "learning to learn."? In contrast to supervised learning, few-shot

learning uses not a training dataset but a so-called support set , from which

we sample training tasks that mimic the use-case scenario during prediction. With

each training task comes a query image to be classified. The model is trained on

several training tasks from the support set; this is called an episode .

Tips: ⼩样本学习，可以看作是 学习如何学习 。

与传统的监督学习不同，⼩样本学习不使⽤训练集，⽽是使⽤所谓的 ⽀持

集 ，从中采样训练任务，以模仿预测时的使⽤场景。

每个训练任务都有⼀个查询图像需要分类。

模型在⽀持集的多个训练任务上进⾏训练；这称为 ⼀个训练轮次 。

FIXME??? 不理解

Next, during testing, the model receives a new task with classes different from

those seen during training. The classes encountered in training are also called

base classes , and the support set during training is also often called the

base set . Again, the task is to classify the query images. Test tasks are similar

to training tasks, except that none of the classes during testing overlap with those

encountered during training, as illustrated in Figure 3.2.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 28 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 3.2

As Figure 3.2 shows, the support and query sets contain different images from the

same class during training. The same is true during testing. However, notice that

the classes in the support and query sets differ from the support and query sets

encountered during training.

There are many different types of few-shot learning. In the most common, meta-

learning, training is essentially about updating the model's parameters such that

it can adapt well to a new task. On a high level, one few-shot learning strategy is

to learn a model that produces embeddings where we can find the target class via

a nearest-neighbor search among the images in the support set. Figure 3.3

illustrates this approach.

Figure 3.3

The model learns how to produce good embeddings from the support set to

classify the query image based on finding the most similar embedding vector.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 29 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Exercises
3-1. MNIST (https://en.wikipedia.org/wiki/MNIST_database) is a classic and

popular machine learning dataset consisting of 50,000 handwritten digits from 10

classes corresponding to the digits 0 to 9. How can we partition the MNIST dataset

for a one-shot classification context?

3-2. What are some real-world applications or use cases for few-shot learning?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 30 页，共 239 页

https://en.wikipedia.org/wiki/MNIST_database
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 4: The Lottery Ticket
Hypothesis
What is the lottery ticket hypothesis, and, if it holds true, how is it useful in

practice?

The lottery ticket hypothesis is a concept in neural network training that posits

that within a randomly initialized neural network, there exists a subnetwork (or

winning ticket ?) that can, when trained separately, achieve the same

accuracy on a test set as the full network after being trained for the same number

of steps. This idea was first proposed by Jonathan Frankle and Michael Carbin in

2018.

Tips: 彩票假设 lottery ticket hypothesis ，是神经⽹络训练中，⼀个

重要的概念。它指出，在随机初始化的神经⽹络中，存在⼀个 ⼦⽹络 （或

彩票 ），当单独训练时，可以达到与完整⽹络相同的准确率。

This chapter illustrates the lottery hypothesis step by step, then goes over weight

pruning, one of the key techniques to create smaller subnetworks as part of the

lottery hypothesis methodology. Lastly, it discusses the practical implications and

limitations of the hypothesis.

Tips: 本章将展示 彩票假设 的训练过程，然后介绍 权重剪枝 ，这是 彩票假

设 ⽅法论中，创建较⼩⼦⽹络的关键技术。最后，讨论 彩票假设 的实际应

⽤和局限性。

The Lottery Ticket Training Procedure
Figure 4.1 illustrates the training procedure for the lottery ticket hypothesis in four

steps, which we'll discuss one by one to help clarify the concept.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 31 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 4.1

In Figure 4.1, we start with a large neural network that we train until

convergence , meaning we put in our best efforts to make it perform as well as

possible on a target dataset (for example, minimizing training loss and maximizing

classification accuracy). This large neural network is initialized as usual using

small random weights.

Next, as shown in Figure 4.1, we prune the neural network's weight

parameters , removing them from the network. We can do this by setting the

weights to zero to create sparse weight matrices. Here, we can either prune

individual weights, known as unstructured pruning, or prune larger "chunks"?

from the network, such as entire convolutional filter channels. This is known as

structured pruning.

Tips: 剪枝时，有两种⽅式，⼀种是 unstructured pruning ，⼀种是

structured pruning 。他们的差异是， unstructured pruning 是逐个

剪枝，⽽ structured pruning 是剪枝整个 卷积核 。

The original lottery hypothesis approach follows a concept known as iterative

magnitude pruning, where the weights with the lowest magnitudes are removed

in an iterative fashion. (We will revisit this concept in Chapter [ch06] when

discussing techniques to reduce overfitting.)

Tips: 迭代剪枝 iterative magnitude pruning 。

After the pruning step, we reset the weights to the original small random values

used in step 1 in Figure 4.1 and train the pruned network . It's worth emphasizing

that we do not reinitialize the pruned network with any small random weights (as

is typical for iterative magnitude pruning), and instead we reuse the weights from

step 1.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 32 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips: 剪枝后，我们重置权重为原始⼩随机值，并训练剪枝后的⽹络。??? 没

理解 FIXME

We then repeat the pruning steps 2 through 4 until we reach the desired network

size. For example, in the original lottery ticket hypothesis paper, the authors

successfully reduced the network to 10 percent of its original size without

sacrificing classification accuracy. As a nice bonus, the pruned (sparse) network,

referred to as the winning ticket, even demonstrated improved generalization

performance compared to the original (large and dense) network.

Practical Implications and Limitations
If it's possible to identify smaller subnetworks that have the same predictive

performance as their up-to-10-times-larger counterparts, this can have significant

implications for both neural training and inference. Given the ever-growing size of

modern neural network architectures, this can help cut training costs and

infrastructure.

Tips: 如果可以识别出与完整⽹络具有相同预测性能的较⼩⼦⽹络，这对于

神经⽹络的 训练 和 推理 都有显著的影响，可以显著 降低训练成本 和 基础

设施成本 。

Sound too good to be true? Maybe. If winning tickets can be identified efficiently,

this would be very useful in practice. However, at the time of writing, there is no

way to find the winning tickets without training the original network. Including

the pruning steps would make this even more expensive than a regular training

procedure. Moreover, after the publication of the original paper, researchers found

that the original weight initialization may not work to find winning tickets for

larger-scale networks, and additional experimentation with the initial weights of

the pruned networks is required.

The good news is that winning tickets do exist. Even if it's currently not possible

to identify them without training their larger neural network counterparts, they

can be used for more efficient inference after training.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 33 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Exercises
4-1. Suppose we're trying out the lottery ticket hypothesis approach and find that

the performance of the subnetwork is not very good (compared to the original

network). What next steps might we try?

4-2. The simplicity and efficiency of the rectified linear unit (ReLU) activation

function have made it one of the most popular activation functions in neural

network training, particularly in deep learning, where it helps to mitigate

problems like the vanishing gradient. The ReLU activation function is defined by

the mathematical expression max(0, x). This means that if the input x is positive,

the function returns x, but if the input is negative or 0, the function returns 0. How

is the lottery ticket hypothesis related to training a neural network with ReLU

activation functions?

References
The paper proposing the lottery ticket hypothesis: Jonathan Frankle and

Michael Carbin, "The Lottery Ticket Hypothesis: Finding Sparse, Trainable

Neural Networks"? (2018), https://arxiv.org/abs/1803.03635.

The paper proposing structured pruning for removing larger parts, such as

entire convolutional filters, from a network: Hao Li et al., "Pruning Filters for

Efficient ConvNets"? (2016), https://arxiv.org/abs/1608.08710.

Follow-up work on the lottery hypothesis, showing that the original weight

initialization may not work to find winning tickets for larger-scale networks,

and additional experimentation with the initial weights of the pruned

networks is required: Jonathan Frankle et al., "Linear Mode Connectivity and

the Lottery Ticket Hypothesis"? (2019), https://arxiv.org/abs/1912.05671.

An improved lottery ticket hypothesis algorithm that finds smaller networks

that match the performance of a larger network exactly: Vivek Ramanujan et

al., "What's Hidden in a Randomly Weighted Neural Network?"? (2020),

https://arxiv.org/abs/1911.13299.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 34 页，共 239 页

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1912.05671
https://arxiv.org/abs/1911.13299
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 5: Reducing Overfitting with
Data
Suppose we train a neural network classifier in a supervised fashion and notice

that it suffers from overfitting. What are some of the common ways to reduce

overfitting in neural networks through the use of altered or additional data?

Overfitting, a common problem in machine learning, occurs when a model fits the

training data too closely, learning its noise and outliers rather than the underlying

pattern. As a result, the model performs well on the training data but poorly on

unseen or test data. While it is ideal to prevent overfitting, it's often not possible

to completely eliminate it. Instead, we aim to reduce or minimize overfitting as

much as possible.

The most successful techniques for reducing overfitting revolve around collecting

more high-quality labeled data. However, if collecting more labeled data is not

feasible, we can augment the existing data or leverage unlabeled data for

pretraining .

Tips: 减少 过拟合 ，最有效的技术是收集更多 ⾼质量的标签数据 ；此外，还

可以使⽤ 数据增强 和 预训练 等技术。

Common Methods
This chapter summarizes the most prominent examples of dataset-related

techniques that have stood the test of time, grouping them into the following

categories: collecting more data , data augmentation , and

pretraining .

Collecting More Data

One of the best ways to reduce overfitting is to collect more (good-quality) data.

We can plot learning curves to find out whether a given model would benefit from

more data. To construct a learning curve, we train the model to different training

set sizes (10 percent, 20 percent, and so on) and evaluate the trained model on

the same fixed-size validation or test set. As shown in Figure 5.1, the validation

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 35 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

accuracy increases as the training set sizes increase. This indicates that we can

improve the model's performance by collecting more data.

Figure 5.1

The gap between training and validation performance indicates the degree of

overfitting--the more extensive the gap, the more overfitting occurs. Conversely,

the slope indicating an improvement in the validation performance suggests the

model is underfitting and can benefit from more data. Typically, additional

data can decrease both underfitting and overfitting .

Data Augmentation

Data augmentation refers to generating new data records or features based on

existing data. It allows for the expansion of a dataset without additional data

collection.

Tips: 数据增强 data augmentation ，是⼀种常⽤的技术，⽤于增加数据

集的⼤⼩和多样性。它通过 ⽣成新的数据 ，来扩展数据集，⽽不需要额外的

数据收集。

Data augmentation allows us to create different versions of the original input

data, which can improve the model's generalization performance. Why?

Augmented data can help the model improve its ability to generalize, since it

makes it harder to memorize spurious information via training examples or

features--or, in the case of image data, exact pixel values for specific pixel

locations.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 36 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips: 数据增强 data augmentation ，可以提⾼模型的泛化性能。为什

么？因为增强后的数据，使模型忽略 虚假信息 ，典型场景：在 图像数据

中，会弱化 特定像素 的 像素值 。

Figure 5.2 highlights common image data augmentation techniques, including

increasing brightness , flipping , and cropping .

Figure 5.2

Data augmentation is usually standard for image data (see Figure 5.2) and text

data (discussed further in Chapter [ch15], but data augmentation methods for

tabular data also exist.

Instead of collecting more data or augmenting existing data, it is also possible to

generate new, synthetic data . While more common for image data and text,

generating synthetic data is also possible for tabular datasets.

Tips:数据增强 data augmentation ，是图像数据和⽂本数据的标准技术。

除了 数据增强 ，还可以 ⽣成合成数据 。

Pretraining

As discussed in Chapter [ch02], self-supervised learning lets us leverage large,

unlabeled datasets to pretrain neural networks. This can also help reduce

overfitting on the smaller target datasets.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 37 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

As an alternative to self-supervised learning , traditional transfer

learning on large labeled datasets is also an option. Transfer learning is most

effective if the labeled dataset is closely related to the target domain. For

instance, if we train a model to classify bird species, we can pretrain a network on

a large, general animal classification dataset. However, if such a large animal

classification dataset is unavailable, we can also pretrain the model on the

relatively broad ImageNet dataset.

A dataset may be extremely small and unsuitable for supervised learning--for

example, if it contains only a handful of labeled examples per class. If our

classifier needs to operate in a context where the collection of additional labeled

data is not feasible, we may also consider few-shot learning .

Other Methods
The previous sections covered the main approaches to using and modifying

datasets to reduce overfitting. However, this is not an exhaustive list. Other

common techniques include:

Feature engineering and normalization

The inclusion of adversarial examples and label or feature noise

Label smoothing

Smaller batch sizes

Data augmentation techniques such as Mixup, Cutout, and CutMix

Tips: 减弱 过度拟合 ，还可以使⽤下述技术：

特征⼯程 和 归⼀化 ：改进特征选择和标准化数据

对抗样本 和 标签或特征噪声 ：添加对抗样本或噪声来增强模型的鲁棒性

标签平滑 ：软化标签，避免模型对训练标签过于⾃信

更⼩的批量⼤⼩ ：使⽤较⼩的batch size来增加训练的随机性

数据增强 技术，如 Mixup 、 Cutout 和 CutMix

Mixup ：混合不同样本的数据

Cutout ：随机遮挡图像的部分区域

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 38 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

CutMix ：将⼀张图像的⼀部分替换为另⼀张图像的对应部分

The next chapter covers additional techniques to reduce overfitting from a model

perspective, and it concludes by discussing which regularization techniques we

should consider in practice.

Exercises
5-1. Suppose we train an XGBoost model to classify images based on manually

extracted features obtained from collaborators. The dataset of labeled training

examples is relatively small, but fortunately, our collaborators also have a labeled

training set from an older project on a related domain. We're considering

implementing a transfer learning approach to train the XGBoost model. Is this a

feasible option? If so, how could we do it? (Assume we are allowed to use only

XGBoost and not another classification algorithm or model.)

5-2. Suppose we're working on the image classification problem of implementing

MNIST-based handwritten digit recognition. We've added a decent amount of data

augmentation to try to reduce overfitting. Unfortunately, we find that the

classification accuracy is much worse than it was before the augmentation. What

are some potential reasons for this?

References
Apaperondataaugmentationfortabulardata:DerekSnow, "DeltaPy: A Framework

for Tabular Data Augmentation in Py- thon"? (2020),

https://github.com/firmai/deltapy.

The paper proposing the GReaT method for generating synthetic tabular data

using an auto-regressive generative large language model: Vadim Borisov et

al., "Language Models Are Realistic Tabular Data Generators"? (2022),

https://arxiv.org/abs/2210.06280.

ThepaperproposingtheTabDDPMmethodforgeneratingsynthetictabulardatausingadiffusionmo

Modelling Tabular Data with Diffusion Models"? (2022),

https://arxiv.org/abs/2209.15421.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 39 页，共 239 页

https://github.com/firmai/deltapy
https://arxiv.org/abs/2210.06280
https://arxiv.org/abs/2209.15421
https://github.com/ningg/Machine-Learning-Q-and-AI

Scikit-learn's user guide offers a section on preprocessing data, featuring

techniques like feature scaling and normalization that can enhance your

model's performance: https://scikit-

learn.org/stable/modules/preprocessing.html.

A survey on methods for robustly training deep models with noisy labels that

explores techniques to mitigate the impact of incorrect or misleading target

values: Bo Han et al., "A Survey of Label-noise Representation Learning: Past,

Present and Future"? (2020), https://arxiv.org/abs/2011.04406.

Theoretical and empirical evidence to support the idea that control- ling the

ratio of batch size to learning rate in stochastic gradient descent is crucial for

good modeling performance in deep neural networks: Fengxiang He,

Tongliang Liu, and Dacheng Tao, "Control Batch Size and Learning Rate to

Generalize Well: Theoretical and Empirical Evidence"? (2019),

https://dl.acm.org/doi/abs/10.5555/3454287.3454390.

Inclusion of adversarial examples, which are input samples designed to

mislead the model, can improve prediction performance by making the model

more robust: Cihang Xie et al., "Adversarial Examples Improve Image

Recognition"? (2019), https://arxiv.org/abs/1911.09665.

Label smoothing is a regularization technique that mitigates the im- pact of

potentially incorrect labels in the dataset by replacing hard 0 and 1

classification targets with softened values: Rafael MÃ¼ller, Simon Kornblith,

and Geoffrey Hinton, "When Does Label Smoothing Help?"? (2019),

https://arxiv.org/abs/1906.02629.

Mixup, a popular method that trains neural networks on blended data pairs to

improve generalization and robustness: Hongyi Zhang et al., "Mixup: Beyond

Empirical Risk Minimization"? (2018), https://arxiv.org/abs/1710.09412.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 40 页，共 239 页

https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://arxiv.org/abs/2011.04406
https://dl.acm.org/doi/abs/10.5555/3454287.3454390
https://arxiv.org/abs/1911.09665
https://arxiv.org/abs/1906.02629
https://arxiv.org/abs/1710.09412
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 6: Reducing Overfitting with
Model Modifications
Suppose we train a neural network classifier in a supervised fashion and

already employ various dataset-related techniques to mitigate overfitting. How

can we change the model or make modifications to the training loop to further

reduce the effect of overfitting?

The most successful approaches against overfitting include regularization

techniques like dropout and weight decay . As a rule of thumb, models with

a larger number of parameters require more training data to generalize well.

Hence, decreasing the model size and capacity can sometimes also help reduce

overfitting. Lastly, building ensemble models is among the most effective ways to

combat overfitting, but it comes with increased computational expense.

Tips: 减少 过拟合 ，最有效的技术是 正则化 ，包括 dropout 和 权重衰

减 ；此外，还可以 减⼩模型⼤⼩ 和 构建集成模型 。

This chapter outlines the key ideas and techniques for several categories of

reducing overfitting with model modifications and then compares them to one

another. It concludes by discussing how to choose between all types of overfitting

reduction methods, including those discussed in the previous chapter.

Common Methods
The various model- and training-related techniques to reduce overfitting can be

grouped into three broad categories: (1) adding regularization , (2) choosing

smaller models , and (3) building ensemble models .

Regularization

We can interpret regularization as a penalty against complexity. Classic

regularization techniques for neural networks include regularization and the

related weight decay method. We implement regularization by adding a

penalty term to the loss function that is minimized during training. This added

L 2

L 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 41 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

term represents the size of the weights, such as the squared sum of the weights.

The following formula shows an regularized loss

where is a hyperparameter that controls the regularization strength .

During backpropagation, the optimizer minimizes the modified loss, now

including the additional penalty term, which leads to smaller model weights and

can improve generalization to unseen data.

Tips: 正则化 regularization ，通过 添加惩罚项 ，来减少模型的 权重 。

Weight decay is similar to regularization but is applied to the optimizer

directly rather than modifying the loss function. Since weight decay has the same

effect as regularization, the two methods are often used synonymously, but

there may be subtle differences depending on the implementation details and

optimizer.

Many other techniques have regularizing effects. For brevity's sake, we'll discuss

just two more widely used methods: dropout and early stopping .

Dropout reduces overfitting by randomly setting some of the activations of the

hidden units to zero during training. Consequently, the neural network cannot rely

on particular neurons to be activated. Instead, it learns to use a larger number of

neurons and multiple independent representations of the same data, which helps

to reduce overfitting.

In early stopping , we monitor the model's performance on a validation set

during training and stop the training process when the performance on the

validation set begins to decline, as illustrated in Figure 6.1.

Tips: 早停 early stopping ，通过 监控模型在验证集上的性能 ，来停⽌训练

过程。

L 2

RegularizedLoss = Loss + w

n

λ

j

∑ j
2

λ

L 2

L 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 42 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 6.1

In Figure 6.1, we can see that the validation accuracy increases as the training and

validation accuracy gap closes. The point where the training and validation

accuracy is closest is the point with the least amount of overfitting, which is

usually a good point for early stopping.

Smaller Models

Classic bias-variance theory suggests that reducing model size can reduce

overfitting. The intuition behind this theory is that, as a general rule of thumb, the

smaller the number of model parameters, the smaller its capacity to memorize or

overfit to noise in the data. The following paragraphs discuss methods to reduce

the model size, including pruning , which removes parameters from a model,

and knowledge distillation , which transfers knowledge to a smaller model.

Tips: 减⼩模型⼤⼩，包括 剪枝 和 知识蒸馏 。

Besides reducing the number of layers and shrinking the layers' widths as a

hyperparameter tuning procedure, another approach to obtaining smaller models

is iterative pruning , in which we train a large model to achieve good

performance on the original dataset. We then iteratively remove parameters of the

model, retraining it on the dataset such that it maintains the same predictive

performance as the original model. (The lottery ticket hypothesis, discussed in

Chapter [ch04], uses iterative pruning.)

Tips: 前置减少模型的参数，包括层数和宽度。后置的 迭代剪枝 ，也是常⽤

⽅法。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 43 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Another common approach to obtaining smaller models is knowledge distillation.

The general idea behind this approach is to transfer knowledge from a large, more

complex model (the teacher) to a smaller model (the student). Ideally, the student

achieves the same predictive accuracy as the teacher, but it does so more

efficiently due to the smaller size. As a nice side effect, the smaller student may

overfit less than the larger teacher model.

Figure 6.2 diagrams the original knowledge distillation process. Here, the

teacher is first trained in a regular supervised fashion to classify the examples

in the dataset well, using a conventional cross-entropy loss between the predicted

scores and ground truth class labels. While the smaller student network is

trained on the same dataset, the training objective is to minimize both

(a) the cross entropy between the outputs and the class labels and

(b) the difference between its outputs and the teacher outputs (measured using

Kullback-Leibler divergence, which quantifies the difference between two

probability distributions by calculating how much one distribution diverges from

the other in terms of information content).

Figure 6.2

By minimizing the Kullback-Leibler divergence--the difference between the teacher

and student score distributions--the student learns to mimic the teacher while

being smaller and more efficient.

Tips: 知识蒸馏 knowledge distillation ，通过 将知识从⼤模型 ， 蒸馏

到 ⼩模型 ，来提⾼⼩模型的性能。

Caveats with Smaller Models

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 44 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

While pruning and knowledge distillation can also enhance a model's

generalization performance, these techniques are not primary or effective ways of

reducing overfitting.

Tips: 剪枝 和 知识蒸馏 ， 可以 提⾼模型的泛化性能，但 不是 减少过拟合

的 主要 ⽅法。

Early research results indicate that pruning and knowledge distillation can

improve the generalization performance, presumably due to smaller model sizes.

However, counterintuitively, recent research studying phenomena like double

descent and grokking also showed that larger, overparameterized models have

improved generalization performance if they are trained beyond the point of

overfitting. Double descent refers to the phenomenon in which models with

either a small or an extremely large number of parameters have good

generalization performance, while models with a number of parameters equal to

the number of training data points have poor generalization performance.

Grokking reveals that as the size of a dataset decreases, the need for optimization

increases, and generalization performance can improve well past the point of

overfitting.

Tips: 双降 double descent ，是⼀种现象，模型参数的数量，在最佳量

级之前和之后，都模型泛化效果，都会变差。但是， 涌现/顿悟 grokking

现象，展示出当模型参数数量超⼤时，泛化性能⼜会变好。 ??? FIXME

How can we reconcile the observation that pruned models can exhibit better

generalization performance with contradictory observations from studies of

double descent and grokking? Researchers recently showed that the improved

training process partly explains the reduction of overfitting due to pruning.

Pruning involves more extended training periods and a replay of learning rate

schedules that may be partly responsible for the improved generalization

performance.

Pruning and knowledge distillation remain excellent ways to improve the

computational efficiency of a model. However, while they can also enhance a

model's generalization performance, these techniques are not primary or effective

ways of reducing overfitting.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 45 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips: 剪枝和知识蒸馏，可以提⾼模型的泛化性能，但不是减少过拟合的主

要⽅法。

Ensemble Methods

Ensemble methods combine predictions from multiple models to improve the

overall prediction performance. However, the downside of using multiple models

is an increased computational cost.

We can think of ensemble methods as asking a committee of experts to weigh in

on a decision and then combining their judgments in some way to make a final

decision. Members in a committee often have different backgrounds and

experiences. While they tend to agree on basic decisions, they can overrule bad

decisions by majority rule. This doesn't mean that the majority of experts is

always right, but there is a good chance that the majority of the committee is

more often right, on average, than every single member.

The most basic example of an ensemble method is majority voting. Here, we train

k different classifiers and collect the predicted class label from each of these k

models for a given input. We then return the most frequent class label as the final

prediction. (Ties are usually resolved using a confidence score, randomly picking a

label, or picking the class label with the lowest index.)

Ensemble methods are more prevalent in classical machine learning than deep

learning because it is more computationally expensive to employ multiple models

than to rely on a single one. In other words, deep neural networks require

significant computational resources, making them less suitable for ensemble

methods.

Random forests and gradient boosting are popular examples of ensemble

methods. However, by using majority voting or stacking, for example, we can

combine any group of models: an ensemble may consist of a support vector

machine, a multilayer perceptron, and a nearest-neighbor classifier. Here, stacking

(also known as stacked generalization)is a more advanced variant of majority

voting that involves training a new model to combine the predictions of several

other models rather than obtaining the label by majorit yvote.

A popular industry technique is to build models from k-fold cross-validation, a

model evaluationt echnique in which we train and evaluate a model on k training

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 46 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

folds.We then compute the average performance metric across all k iterations to

estimate the overall performance measure of the model. After evaluation, we can

either train the model on the entire training dataset or combine the individual

models as an ensemble, as shown in Figure 6.2.

Figure 6.3

As shown in Figure 6.2, the k-fold ensemble approach trains each of the k models

on the respective k "" 1 training folds in each round. After evaluating the models

on the validation folds, we can combine them into a majority vote classifier or

build an ensemble using stacking, a technique that combines multiple

classification or regression models via a meta-model.

While the ensemble approach can potentially reduce overfitting and improve

robustness, this approach is not always suitable. For instance, potential

downsides include managing and deploying an ensemble of models, which can be

more complex and computationally expensive than using a single model.

Other Methods
So far, this book has covered some of the most prominent techniques to reduce

overfitting. Chapter [ch05] covered techniques that aim to reduce overfitting from

a data perspective. Additional techniques for reducing overfitting with model

modifications include skip-connections (found in residual networks, for example),

look-ahead optimizers, stochastic weight averaging, multitask learning, and

snapshot ensembles.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 47 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

While they are not originally designed to reduce overfitting, layer input

normalization techniques such as batch normalization (BatchNorm) and layer

normalization (LayerNorm) can stabilize training and often have a regularizing

effect that reduces overfitting. Weight normalization, which normalizes the model

weights instead of layer inputs, could also lead to better generalization

performance. However, this effect is less direct since weight normalization

(WeightNorm) doesn't explicitly act as a regularizer like weight decay does.

Choosing a Regularization Technique
Improving data quality is an essential first step in reducing overfitting. However,

for recent deep neural networks with large numbers of parameters, we need to do

more to achieve an acceptable level of overfitting. Therefore, data augmentation

and pretraining, along with established techniques such as dropout and weight

decay, remain crucial overfitting reduction methods.

In practice, we can and should use multiple methods at once to reduce overfitting

for an additive effect. To achieve the best results, treat selecting these techniques

as a hyperparameter optimization problem.

Exercises
6-1. Supposewe'reusingearlystoppingasamechanismtoreduceover- fitting--

inparticular,amodernearly-stoppingvariantthatcreates checkpoints of the best

model (for instance, the model with the high- est validation accuracy) during

training so that we can load it after the training has completed. This mechanism

can be enabled in most modern deep learning frameworks. However, a colleague

recommends tuning the number of training epochs instead. What are some of the

advantages and disadvantages of each approach?

6-2. Ensemble models have been established as a reliable and successful method

for decreasing overfitting and enhancing the reliability of predictive modeling

efforts. However, there's always a trade-off. What are some of the drawbacks

associated with ensemble techniques?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 48 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

References
For more on the distinction between regularization and weight decay:

Guodong Zhang et al., "Three Mechanisms of Weight Decay Regularization"?

(2018), https://arxiv.org/abs/1810.12281.

Research results indicate that pruning and knowledge distillation can improve

generalization performance, presumably due to smaller model sizes: Geoffrey

Hinton, Oriol Vinyals, and Jeff Dean, "Distilling the Knowledge in a Neural

Network"? (2015), https://arxiv.org/abs/1503.02531.

Classic bias-variance theory suggests that reducing model size can reduce

overfitting: Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie, "Model

Selection and Bias-Variance Tradeoff,"? Chapter 2.9, in The Elements of

Statistical Learning (Springer, 2009).

The lottery ticket hypothesis applies knowledge distillation to find smaller

networks with the same predictive performance as the original one: Jonathan

Frankle and Michael Carbin, "The Lottery Ticket Hypothesis: Finding Sparse,

Trainable Neural Networks"? (2018), https://arxiv.org/abs/1803.03635.

For more on double descent: https://en.wikipedia.org/wiki/Double_descent.

The phenomenon of grokking indicates that generalization perfor- mance can

improve well past the point of overfitting: Alethea Power et al., "Grokking:

Generalization Beyond Overfitting on Small Algorithmic Datasets"? (2022),

https://arxiv.org/abs/2201.02177.

Recent research shows that the improved training process partly explains the

reduction of overfitting due to pruning: Tian Jin et al., "Pruning's Effect on

Generalization Through the Lens of Training and Regularization"? (2022),

https://arxiv.org/abs/2210.13738.

Dropout was previously discussed as a regularization technique, but it can

also be considered an ensemble method that approximates a weighted

geometric mean of multiple networks: Pierre Baldi and Peter J. Sadowski,

"Understanding Dropout"? (2013),

https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599

e06ad9bf1ba03cb0-Abstract.html.

L 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 49 页，共 239 页

https://arxiv.org/abs/1810.12281
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1803.03635
https://en.wikipedia.org/wiki/Double_descent
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2210.13738
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html
https://github.com/ningg/Machine-Learning-Q-and-AI

Regularization cocktails need to be tuned on a per-dataset basis: Arlind Kadra

et al., "Well-Tuned Simple Nets Excel on Tabular Datasets"? (2021),

https://arxiv.org/abs/2106.11189.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 50 页，共 239 页

https://arxiv.org/abs/2106.11189
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 7: Multi-GPU Training
Paradigms
What are the different multi-GPU training paradigms, and what are their

respective advantages and disadvantages?

Multi-GPU training paradigms can be categorized into two groups: dividing data

for parallel processing with multiple GPUs and dividing the model among multiple

GPUs to handle memory constraints when the model size surpasses that of a

single GPU. Data parallelism falls into the first category, while model parallelism

and tensor parallelism fall into the second category. Techniques like pipeline

parallelism borrow ideas from both categories. In addition, current software

implementations such as DeepSpeed, Colossal AI, and others blend multiple

approaches into a hybrid technique.

This chapter introduces several training paradigms and provides advice on which

to use in practice.

This chapter primarily uses the term GPUs to describe the hardware utilized for

parallel processing. However, the same concepts and techniques discussed can be

applied to other specialized hardware devices, such as tensor processing units

(TPUs) or other accelerators, depending on the specific architecture and

requirements of the system.

The Training Paradigms
The following sections discuss the model parallelism, data parallelism, tensor

parallelism, and sequence parallelism multi-GPU training paradigms.

Model Parallelism

Model parallelism, or inter-op parallelism, is a technique in which different

sections of a large model are placed on different GPUs and are computed

sequentially, with intermediate results passed between the devices. This allows

for the training and execution of models that might not fit entirely on a single

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 51 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

device, but it can require intricate coordination to manage the dependencies

between different parts of the model.

Model parallelism is perhaps the most intuitive form of parallelization across

devices. For example, for a simple neural network that consists of only two

layers""a hidden layer and an output layer""we can keep one layer on one GPU

and the other layer on another GPU. Of course, this can scale to an arbitrary

number of layers and GPUs.

This is a good strategy for dealing with limited GPU memory where the complete

network does not fit into one GPU. However, there are more efficient ways of

using multiple GPUs, such as tensor parallelism, because the chain-like structure

(layer 1 on GPU 1 layer 2 on GPU 2 ...) in model parallelism introduces a

bottleneck. In other words, a major disadvantage of model parallelism is that the

GPUs have to wait for each other. They cannot efficiently work in parallel, as they

depend on one other's outputs.

Data Parallelism

Data parallelism has been the default mode for multi-GPU training for several

years. Here, we divide a minibatch into smaller microbatches. Each GPU then

processes a microbatch separately to compute the loss and loss gradients for the

model weights. After the individual devices process the microbatches, the

gradients are combined to compute the weight update for the next round.

An advantage of data parallelism over model parallelism is that the GPUs can run

in parallel. Each GPU processes a portion of the training minibatch, that is, a

microbatch. However, a caveat is that each GPU requires a full copy of the model.

This is obviously not feasible if we have large models that don't fit into the GPU's

VRAM.

Tensor Parallelism

Tensor parallelism, or intra-op parallelism, is a more efficient form of model

parallelism. Here, the weight and activation matrices are spread across the

devices instead of distributing whole layers across devices: the individual matrices

are split, so we split an individual matrix multiplication across GPUs.

→ →

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 52 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

We can implement tensor parallelism using basic principles of linear algebra; we

can split a matrix multiplication across two GPUs in a row- or column-wise

fashion, as illustrated in Figure 7.1 for two GPUs. (This concept can be extended to

an arbitrary number of GPUs.)

Figure 7.1

Like model parallelism, tensor parallelism allows us to work around memory

limitations. At the same time, it also lets us execute operations in parallel, similar

to data parallelism.

A small weakness of tensor parallelism is that it can result in high communication

overhead between the multiple GPUs across which the matrices are split or

sharded. For instance, tensor parallelism requires frequent synchronization of the

model parameters across devices, which can slow down the overall training

process.

Figure 7.2 compares model, data, and tensor parallelism.

Figure 7.2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 53 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In model parallelism, we put different layers onto different GPUs to work around

GPU memory limitations. In data parallelism, we split a batch across GPUs to train

copies of the model in parallel, averaging gradients for the weight update

afterward. In tensor parallelism, we split matrices (inputs and weights) across

different GPUs for parallel processing when models are too large to fit into GPU

memory.

Pipeline Parallelism

In pipeline parallelism, activations are passed during the forward pass, as in

model parallelism. The twist is that the gradients of the input tensor are passed

backward to prevent the devices from being idle. In a sense, pipeline parallelism

is a sophisticated hybrid version of data and model parallelism.

We can think of pipeline parallelism as a form of model parallelism that tries to

minimize the sequential computation bottleneck, enhancing the parallelism

between the individual layers sitting on different devices. However, pipeline

parallelism also borrows ideas from data parallelism, such as splitting minibatches

further into microbatches.

Pipeline parallelism is definitely an improvement over model parallelism, though

it is not perfect and there will be idle bubbles. A further disadvantage of pipeline

parallelism is that it may require significant effort to design and implement the

pipeline stages and associated communication patterns. Additionally, the

performance gains it generates may not be as substantial as those from other

parallelization techniques, such as pure data parallelism, especially for small

models or in cases where the communication overhead is high.

For modern architectures that are too large to fit into GPU memory, it is more

common nowadays to use a blend of data parallelism and tensor parallelism

techniques instead of pipeline parallelism.

Sequence Parallelism

Sequence parallelism aims to address computational bottlenecks when working

with long sequences using transformer-based LLMs. More specifically, one

shortcoming of transformers is that the self-attention mechanism (the original

scaled-dot product attention) scales quadratically with the input sequence length.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 54 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

There are, of course, more efficient alternatives to the original attention

mechanism that scale linearly.

However, these efficient self-attention mechanisms are less popular, and most

people still prefer the original scaled-dot product attention mechanism as of this

writing. Sequence parallelism, illustrated in Figure 7.3, splits the input sequence

into smaller chunks to be distributed across GPUs, which aims to reduce

computation memory constraints of self-attention mechanisms.

Figure 7.3

How does sequence parallelism relate to the multi-GPU techniques discussed

earlier? Sequence parallelism deals specifically with sequential data, tensor

parallelism deals with the model's internal structure, and data parallelism deals

with how the training data is divided. Theoretically, since each of these

parallelism strategies addresses a different aspect of the computational challenge,

they can thus be combined in various ways to optimize the training or inference

process. Sequence parallelism is not as well studied as other parallelization

techniques, however.

While sequence parallelism appears useful in practice, it also introduces

additional communication overheads similar to the aforementioned parallelism

techniques. Like data parallelism, it requires us to duplicate the model and make

sure it fits into the device memory. Another of its disadvantages (depending on

the implementation) for multi-GPU training of transformers is that breaking up the

input sequence into smaller subsequences can decrease the model's accuracy

(mainly when the model is applied to longer sequences).

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 55 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Recommendations
Practical recommendations depend on the context. If we train small models that

fit onto a single GPU, then data parallelism strategies may be the most efficient.

Performance gains from pipeline parallelism may not be as significant as those

from other parallelization techniques, such as data parallelism, especially for

small models or in cases where the communication overhead is high.

If models are too large to fit into the memory of a single GPU, we need to explore

model or tensor parallelism. Tensor parallelism is naturally moreefficient; the

GPUs can work in parallel since there is no sequential dependency as in model

parallelism.

Modern multi-GPU strategies also typically combine data parallelism and tensor

parallelism.

Exercises
7-1. Suppose we are implementing our own version of tensor parallelism, which

works great when we train our model with a standard stochastic gradient descent

optimizer. However, when we try the Adam optimizer by Diederik P. Kingma and

Jimmy Ba, we encounter an out-of-memory device. What problem might explain

this issue?

7-2. Suppose we don't have access to a GPU and are considering using data

parallelism on the CPU. Is this a good idea?

References
The original paper on the Adam optimizer: Diederik P. Kingma and Jimmy Ba,

"Adam: A Method for Stochastic Optimization"? (2014),

https://arxiv.org/abs/1412.6980.

FormoreonDeepSpeedandColossal-AIformulti-GPUtraining:

https://github.com/microsoft/DeepSpeed and

https://github.com/hpcaitech/ColossalAI.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 56 页，共 239 页

https://arxiv.org/abs/1412.6980
https://github.com/microsoft/DeepSpeed
https://github.com/hpcaitech/ColossalAI
https://github.com/ningg/Machine-Learning-Q-and-AI

Pipeline parallelism tutorials and research by the DeepSpeed team:

https://www.deepspeed.ai/tutorials/pipeline and Yanping Huang et al.,

"GPipe: Efficient Training of Giant Neural Networks Using Pipeline

Parallelism"? (2018), https://arxiv.org/abs/1811.06965.

The paper proposing sequence parallelism for transformer-based language

models: Shenggui Li et al., "Sequence Parallelism: Long Sequence Training

from [a] System[s] Perspective"? (2022), https://arxiv.org/abs/2105.13120.

The scaled-dot product attention mechanism was proposed with the original

transformer architecture: Ashish Vaswani et al., "Attention Is All You Need"?

(2017), https://arxiv.org/abs/1706.03762.

A survey covering alternatives to the original self-attention mechanism that

scale linearly: Yi Tay et al., "Efficient Transformers: A Survey"? (2020),

https://arxiv.org/abs/2009.06732.

A survey covering additional techniques to improve the training efficiency of

transformers: Bohan Zhuang et al., "A Survey on Efficient Training of

Transformers"? (2023), https://arxiv.org/abs/2302.01107.

Modern multi-GPU strategies typically combine data parallelism and tensor

parallelism. Popular examples include DeepSpeed stages 2 and 3, described in

this tutorial on the zero redundancy optimizer:

https://www.deepspeed.ai/tutorials/zero/.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 57 页，共 239 页

https://www.deepspeed.ai/tutorials/pipeline
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/2105.13120
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2302.01107
https://www.deepspeed.ai/tutorials/zero/
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 8: The Success of
Transformers
What are the main factors that have contributed to the success of transformers?

In recent years, transformers have emerged as the most successful neural network

architecture, particularly for various natural language processing tasks. In fact,

transformers are now on the cusp of becoming state of the art for computer vision

tasks as well. The success of transformers can be attributed to several key factors,

including their attention mechanisms , ability to be parallelized easily ,

unsupervised pretraining , and high parameter counts .

Tips:

注意⼒机制，使得模型可以关注到输⼊序列中的重要部分，从⽽提⾼模

型性能。

模型并⾏化，从⽽提⾼训练速度。

⾃监督预训练，使得模型可以利⽤⼤量⽆标签数据，从⽽提⾼模型性

能。

⾼参数数量，使得模型可以学习到更复杂的特征，从⽽提⾼模型性能。

The Attention Mechanism
The self-attention mechanism found in transformers is one of the key design

components that make transformer-based LLMs so successful. However,

transformers are not the first architecture to utilize attention mechanisms.

Attention mechanisms were first developed in the context of image recognition

back in 2010, before being adopted to aid the translation of long sentences in

recurrent neural networks. (Chapter [ch16] compares the attention mechanisms

found in recurrent neural networks and transformers in greater detail.)

The aforementioned attention mechanism is inspired by human vision, focusing

on specific parts of an image (foveal glimpses) at a time to process information

hierarchically and sequentially. In contrast, the fundamental mechanism

underlying transformers is a self-attention mechanism used for sequence-to-

sequence tasks, such as machine translation and text generation. It allows each

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 58 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

token in a sequence to attend to all other tokens, thus providing context-aware

representations of each token.

Tips: ⼈类视觉系统，是分层处理的，先关注到特定部分（ foveal

glimpses 中央凹注视），然后逐步关注到更多部分(以 分层 和 顺序 的⽅式

处理信息)。

⼈类视觉：像看东⻄⼀样，先看重点部分，再逐步看更多细节

Transformer⾃注意⼒：每个词都能"看到"句⼦中的所有其他词，理解上

下⽂关系

What makes attention mechanisms so unique and useful? For the following

illustration, suppose we are using an encoder network on a fixed-length

representation of the input sequence or image -- this can be a fully connected,

convolutional, or attention-based encoder.

Tips: FIXME, 注意⼒权重是动态的？？？ 因为跟元素相对位置有关？元素就

是 token？

在Transformer中，编码器使⽤⾃注意⼒机制，计算每个输⼊token相对于

序列中其他token的重要性，从⽽让模型关注输⼊序列中的相关部分。

概念上，注意⼒机制允许，Transformer关注序列或图像的不同部分。

表⾯上，这听起来⾮常类似于 全连接层 ，其中每个输⼊元素与下⼀个层

中的输⼊元素的权重连接。

在注意⼒机制中，计算注意⼒权重涉及将每个输⼊元素与所有其他元素

进⾏⽐较。

通过这种⽅法获得的注意⼒权重是 动态 的，并且依赖于输⼊。

相⽐之下，卷积或全连接层的权重在训练后是 固定的 ，如Figure 8.1所

示。

In a transformer, the encoder uses self-attention mechanisms to compute the

importance of each input token relative to other tokens in the sequence, allowing

the model to focus on relevant parts of the input sequence. Conceptually,

attention mechanisms allow the transformers to attend to different parts of a

sequence or image. On the surface, this sounds very similar to a fully connected

layer where each input element is connected via a weight with the input element

in the next layer. In attention mechanisms, the computation of the attention

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 59 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

weights involves comparing each input element to all others. The attention

weights obtained by this approach are dynamic and input dependent. In contrast,

the weights of a convolutional or fully connected layer are fixed after training, as

illustrated in Figure 8.1.

Figure 8.1

As the top part of Figure 8.1 shows, once trained, the weights of fully connected

layers remain fixed regardless of the input. In contrast, as shown at the bottom,

self-attention weights change depending on the inputs, even after a transformer is

trained.

Tips:

注意⼒机制，允许神经⽹络选择性地对不同输⼊特征的重要性进⾏加

权，从⽽让模型专注于给定任务的输⼊的 最相关部分 。

这提供了对每个词或图像token的上下⽂理解，允许更细致的解释，这是

使Transformer如此成功的⼀个⽅⾯。

Attention mechanisms allow a neural network to selectively weigh the importance

of different input features, so the model can focus on the mostrelevant parts of

the input for a given task. This provides a contextual understanding of each word

or image token, allowing for more nuanced interpretations, which is one of the

aspects that can make transformers work so well.

Pretraining via Self-Supervised Learning

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 60 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips:

⾃监督预训练，是Transformer成功的⼀个重要因素。

在⾃监督预训练中，Transformer模型被训练来预测句⼦中的缺失词或⽂

档中的下⼀个句⼦。

通过学习预测这些缺失词或下⼀个句⼦，模型被迫学习语⾔的通⽤表

示，可以针对各种下游任务进⾏微调。

Pretraining transformers via self-supervised learning on large, unlabeled datasets

is another key factor in the success of transformers. During pretraining, the

transformer model is trained to predict missing words in a sentence or the next

sentence in a document, for example. By learning to predict these missing words

or the next sentence, the model is forced to learn general representations of

language that can be fine-tuned for a wide range of downstream tasks.

While unsupervised pretraining has been highly effective for natural language

processing tasks, its effectiveness for computer vision tasks is still an active area

of research. (Refer to Chapter [ch02] for a more detailed discussion of self-

supervised learning.)

Large Numbers of Parameters
One noteworthy characteristic of transformers is their large model sizes. For

example, the popular 2020 GPT-3 model consists of 175 billion trainable

parameters, while other transformers, such as switch transformers, have trillions

of parameters.

The scale and number of trainable parameters of transformers are essential

factors in their modeling performance, particularly for large-scale natural

language processing tasks. For instance, linear scaling laws suggest that

the training loss decreases proportionally with an increase in model size, so a

doubling of the model size can halve the training loss.

This, in turn, can lead to better performance on the downstream target task.

However, it is essential to scale the model size and the number of training tokens

equally. This means the number of training tokens should be doubled for every

doubling of model size.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 61 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Since labeled data is limited, utilizing large amounts of data during unsupervised

pretraining is vital.

To summarize, large model sizes and large datasets are critical factors in

transformers' success. Additionally, using self-supervised learning, the ability to

pretrain transformers is closely tied to using large model sizes and large datasets.

This combination has been critical in enabling the success of transformers in a

wide range of natural language processing tasks.

Tips: 总⽽⾔之，Transformer的成功，很⼤程度上归功于其 ⼤模型 和 ⼤数

据 的使⽤。

线性缩放定律：训练损失与模型⼤⼩成正⽐，因此增加模型⼤⼩可以减

少训练损失。

训练tokens数量：训练tokens数量应该与模型⼤⼩成正⽐，因此增加模

型⼤⼩应该增加训练tokens数量。

Easy Parallelization
Training large models on large datasets requires vast computational

resources , and it's key that the computations can be parallelized to utilize these

resources.

Fortunately, transformers are easy to parallelize since they take a fixed-length

sequence of word or image tokens as input. For instance, the self-attention

mechanism used in most transformer architectures involves computing the

weighted sum between a pair of input elements. Furthermore, these pair-wise

token comparisons can be computed independently, as illustrated in Figure 8.2,

making the self-attention mechanism relatively easy to parallelize across different

GPU cores.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 62 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 8.2

In addition, the individual weight matrices used in the self-attention mechanism

(not shown in Figure 8.2) can be distributed across different machines for

distributed and parallel computing.

Exercises
8-1. As discussed in this chapter, self-attention is easily parallelizable, yet

transformers are considered computationally expensive due to self-attention. How

can we explain this contradiction?

8-2. Since self-attention scores represent importance weights for the various input

elements, can we consider self-attention to be a form of feature selection?

References
An example of an attention mechanism in the context of image rec- ognition:

Hugo Larochelle and Geoffrey Hinton, "Learning to Combine Foveal Glimpses

with a Third-Order Boltzmann Machine"? (2010),

https://dl.acm.org/doi/10.5555/2997189.2997328.

The paper introducing the self-attention mechanism with the original

transformer architecture: Ashish Vaswani et al., "Attention Is All You Need"?

(2017), https://arxiv.org/abs/1706.03762.

Transformers can have trillions of parameters: William Fedus, Barret Zoph, and

Noam Shazeer, "Switch Transformers: Scaling to Trillion Parameter Models

with Simple and Efficient Sparsity"? (2021), https://arxiv.org/abs/2101.03961.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 63 页，共 239 页

https://dl.acm.org/doi/10.5555/2997189.2997328
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2101.03961
https://github.com/ningg/Machine-Learning-Q-and-AI

Linear scaling laws suggest that training loss decreases proportionally with an

increase in model size: Jared Kaplan et al., "Scaling Laws for Neural Language

Models"? (2020), https://arxiv.org/abs/2001.08361.

Research suggests that in transformer-based language models, the training

tokens should be doubled for every doubling of model size: Jordan Hoffmann

et al., "Training Compute-Optimal Large Language Models"? (2022),

https://arxiv.org/abs/2203.15556.

Formoreabouttheweightsusedinself-attentionandcross-attention mechanisms,

check out my blog post: "Understanding and Coding the Self-Attention

Mechanism of Large Language Models from Scratch"? at

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 64 页，共 239 页

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2203.15556
https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 9: Generative AI Models
What are the popular categories of deep generative models in deep learning

(also called generative AI), and what are their respective downsides?

Many different types of deep generative models have been applied to generating

different types of media: images, videos, text, and audio. Beyond these types of

media, models can also be repurposed to generate domain-specific data, such as

organic molecules and protein structures. This chapter will first define generative

modeling and then outline each type of generative model and discuss its

strengths and weaknesses.

Generative vs. Discriminative Modeling
In traditional machine learning, there are two primary approaches to modeling

the relationship between input data (x) and output labels (y): generative

models and discriminative models .

Generative models aim to capture the underlying probability distribution

of the input data p(x) or the joint distribution p(x, y) between inputs and

labels.

In contrast, discriminative models focus on modeling the conditional

distribution p(y | x) of the labels given the inputs.

A classic example that highlights the differences between these approaches is to

compare the naive Bayes classifier and the logistic regression

classifier .

Both classifiers estimate the class label probabilities p(y | x) and can be used

for classification tasks.

However, logistic regression is considered a discriminative model

because it directly models the conditional probability distribution p(y | x) of

the class labels given the input features without making assumptions about

the underlying joint distribution of inputs and labels.

Naive Bayes , on the other hand, is considered a generative model because

it models the joint probability distribution p(x, y) of the input features x and

the output labels y. By learning the joint distribution, a generative model like

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 65 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

naive Bayes captures the underlying data generation process, which enables it

to generate new samples from the distribution if needed.

Tips:

⻉叶斯分类器，假设输⼊和输出之间存在联合概率分布；可以⽣成新的

样本，因为它是⽣成模型；

逻辑回归分类器，假设输⼊和输出之间存在条件概率分布；不能⽣成新

的样本；

Types of Deep Generative Models
When we speak of deep generative models or deep generative AI, we often loosen

this definition to include all types of models capable of producing realistic-looking

data (typically text, images, videos, and sound). The remainder of this chapter

briefly discusses the different types of deep generative models used to generate

such data.

Energy-Based Models

Energy-based models (EBMs) are a class of generative models that learn an energy

function, which assigns a scalar value (energy) to each data point. Lower energy

values correspond to more likely data points. The model is trained to minimize

the energy of real data points while increasing the energy of generated data

points.

Examples of EBMs include deep Boltzmann machines (DBMs) .

One of the early breakthroughs in deep learning, DBMs provide a means to learn

complex representations of data. You can think of them as a form of unsupervised

pretraining, resulting in models that can then be fine-tuned for various tasks.

Somewhat similar to naive Bayes and logistic regression, DBMs and multilayer

perceptrons (MLPs) can be thought of as generative and discriminative

counterparts, with DBMs focusing on capturing the data generation process and

MLPs focusing on modeling the decision boundary between classes or mapping

inputs to outputs.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 66 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

A DBM consists of multiple layers of hidden nodes, as shown in Figure 9.1. As the

figure illustrates, along with the hidden layers, there's usually a visible layer that

corresponds to the observable data. This visible layer serves as the input layer

where the actual data or features are fed into the network. In addition to using a

different learning algorithm than MLPs (contrastive divergence instead of

backpropagation), DBMs consist of binary nodes (neurons) instead of continuous

ones.

Figure 9.1

Suppose we are interested in generating images. A DBM can learn the joint

probability distribution over the pixel values in a simple image dataset like MNIST.

To generate new images, the DBM then samples from this distribution by

performing a process called Gibbs sampling. Here, the visible layer of the DBM

represents the input image. To generate a new image, the DBM starts by

initializing the visible layer with random values or, alternatively, uses an existing

image as a seed. Then, after completing several Gibbs sampling iterations, the

final state of the visible layer represents the generated image.

DBMs played an important historical role as one of the first deep generative

models, but they are no longer very popular for generating data. They are

expensive and more complicated to train, and they have lower expressivity

compared to the newer models described in the following sections, which

generally results in lower-quality generated samples.

Variational Autoencoders

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 67 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Variational autoencoders (VAEs) are built upon the principles of variational

inference and autoencoder architectures. Variational inference is a method for

approximating complex probability distributions by optimizing a simpler, tractable

distribution to be as close as possible to the true distribution. Autoencoders are

unsupervised neural networks that learn to compress input data into a low-

dimensional representation (encoding) and subsequently reconstruct the original

data from the compressed representation (decoding) by minimizing the

reconstruction error.

The VAE model consists of two main submodules: an encoder network and a

decoder network. The encoder network takes, for example, an input image and

maps it to a latent space by learning a probability distribution over the latent

variables. This distribution is typically modeled as a Gaussian with parameters

(mean and variance) that are functions of the inputimage. The decoder network

then takes a sample from the learned latent distribution and reconstructs the

input image from this sample. The goal of the VAE is to learn a compact and

expressive latent representation that captures the essential structure of the input

data while being able to generate new images by sampling from the latent space.

(See Chapter [ch01] for more details on latent representations.)

Figure 9.2 illustrates the encoder and decoder submodules of an auto-encoder,

where represents the reconstructed input x. In a standard variational

autoencoder, the latent vector is sampled from a distribution that approximates a

standard Gaussian distribution.

Figure 9.2

Training a VAE involves optimizing the model's parameters to minimize a loss

function composed of two terms: a reconstruction loss and a Kullback -- Leibler-

divergence (KL-divergence) regularization term. The reconstruction loss ensures

that the decoded samples closely resemble the input images, while the KL-

divergence term acts as a surrogate loss that encourages the learned latent

distribution to be close to a predefined prior distribution (usually a standard

Gaussian). To generate new images, we then sample points from the latent

x′

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 68 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

space's prior (standard Gaussian) distribution and pass them through the decoder

network, which generates new, diverse images that look similar to the training

data.

Disadvantages of VAEs include their complicated loss function consisting of

separate terms, as well as their often low expressiveness. The latter can result in

blurrier images compared to other models, such as generative adversarial

networks.

Generative Adversarial Networks

Generative adversarial networks (GANs) are models consisting of interacting

subnetworks designed to generate new data samples that are similar to a given

set of input data. While both GANs and VAEs are latent variable models that

generate data by sampling from a learned latent space, their architectures and

learning mechanisms are fundamentally different.

GANs consist of two neural networks, a generator and a discriminator, that are

trained simultaneously in an adversarial manner. The generator takes a random

noise vector from the latent space as input and generates a synthetic data sample

(such as an image). The discriminator's task is to distinguish between real

samples from the training data and fake samples generated by the generator, as

illustrated in Figure 9.3.

Figure 9.3

The generator in a GAN somewhat resembles the decoder of a VAE in terms of its

functionality. During inference, both GAN generators and VAE decoders take

random noise vectors sampled from a known distribution (for example, a standard

Gaussian) and transform them into synthetic data samples, such as images.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 69 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

One significant disadvantage of GANs is their unstable training due to the

adversarial nature of the loss function and learning process. Balancing the

learning rates of the generator and discriminator can be difficult and can often

result in oscillations, mode collapse, or non-convergence. The second main

disadvantage of GANs is the low diversity of their generated outputs, often due to

mode collapse. Here, the generator is able to fool the discriminator successfully

with a small set of samples, which are representative of only a small subset of the

original training data.

Flow-Based Models

The core concept of flow-based models, also known as normalizing flows, is

inspired by long-standing methods in statistics. The primary goal is to transform a

simple probability distribution (like a Gaussian) into a more complex one using

invertible transformations.

Although the concept of normalizing flows has been apart of the statistics

field for a long time, the implementation of early flow-based deep learning

models, particularly for image generation, is a relatively recent development. One

of the pioneering models in this area was the non-linear independent components

estimation (NICE) approach. NICE begins with a simple probability distribution,

often something straightforward like a normal distribution. You can think of this

as a kind of "random noise,"? or data with no particular shape or structure. NICE

then applies a series of transformations to this simple distribution. Each

transformation is designed to make the datalook more like the final target (for

instance, the distribution of real-world images). These transformations are

"invertible,"? meaning we can always reverse them back to the original simple

distribution. After several successive transformations, the simple distribution has

morphed into a complex distribution that closely matches the distribution of the

target data (such as images). We can now generate new data that looks like the

target data by picking random points from this complex distribution.

Figure 9.4 illustrates the concept of a flow-based model, which maps the complex

input distribution to a simpler distribution and back.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 70 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 9.4

At first glance, the illustration is very similar to the VAE illustration in Figure 9.2.

However, while VAEs use neural network encoders like convolutional neural

networks, the flow-based model uses simpler decoupling layers, such as simple

linear transformations. Additionally, while the decoder in a VAE is independent of

the encoder, the data-transforming functions in the flow-based model are

mathematically inverted to obtain the outputs.

Unlike VAEs and GANs, flow-based models provide exact likelihoods, which gives

us insights into how well the generated samples fit the training data distribution.

This can be useful in anomaly detection or density estimation, for example.

However, the quality of flow-based models for generating image data is usually

lower than GANs. Flow-based models also often require more memory and

computational resources than GANs or VAEs since they must store and compute

inverses of transformations.

Autoregressive Models

Autoregressive models are designed to predict the next value based on current

(and past) values. LLMs for text generation, like ChatGPT (discussed further in

Chapter [ch17]), are one popular example of this type of model.

Similar to generating one word at a time, in the context of image generation,

autoregressive models like PixelCNN try to predict one pixel at a time, given the

pixels they have seen so far. Such a model might predict pixels from top left to

bottom right, in a raster scan order, or in any other defined order.

To illustrate how autoregressive models generate an image one pixel at a time,

suppose we have an image of size H × W (where H is the height and W is the

width), ignoring the color channel for simplicity's sake. This image consists of N

pixels, where . The probability of observing a particular image ini = 1, … ,N

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 71 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

the dataset is then . Basedon the chain rule of

probability in statistics, we can decompose this joint probability into conditional

probabilities:

Here, is the probability of the first pixel, is the probability of the

second pixel given the first pixel, is the probability of the third pixel

given the first and second pixels, and so on.

In the context of image generation, an autoregressive model essentially tries to

predict one pixel at a time, as described earlier, given the pixels it has seen so far.

Figure 9.5 illustrates this process, where pixels represent the context

and pixel is the next pixel to be generated.

Figure 9.5

The advantage of autoregressive models is that the next-pixel (or word) prediction

is relatively straightforward and interpretable. In addition, auto- regressive

models can compute the likelihood of data exactly, similar to flow-based models,

which can be useful for tasks like anomaly detection. Furthermore, autoregressive

P (Image) = P (i , i , … , i)1 2 N

P (Image) = P i , i , … , i (1 2 N)

= P i ⋅ P i ∣ i ⋅ P i ∣ i , i …P i ∣ i … i (1) (2 1) (3 1 2) (N 1 N−1)

P (i)1 P (i ∣i)2 1

P (i ∣i , i)3 1 2

i , … , i 1 53

i 54

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 72 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

models are easier to train than GANs as they don't suffer from issues like mode

collapse and other training instabilities.

However, autoregressive models can be slow at generating new samples. This is

because they have to generate data one step at a time (for example, pixel by pixel

for images), which can be computationally expensive. Autoregressive models may

also struggle to capture long-range dependencies because each output is

conditioned only on previously generated outputs.

In terms of overall image quality, autoregressive models are therefore usually

worse than GANs but are easier to train.

Diffusion Models

As discussed in the previous section, flow-based models transform a simple

distribution (such as a standard normal distribution) into a complex one (the

target distribution) by applying a sequence of invertible and differentiable

transformations (flows). Like flow-based models, diffusion models alsoapply a

series of transformations. However, the underlying concept is fundamentally

different.

Diffusion models transform the input data distribution into a simple noise

distribution over a series of steps using stochastic differential equations. Diffusion

is a stochastic process in which noise is progressively added to the data until it

resembles a simpler distribution, like Gaussian noise. To generate new samples,

the process is then reversed, starting from noise and progressively removing it.

Figure 9.6 outlines the process of adding and removing Gaussian noise from an

input image x. During inference, the reverse diffusion process is used to generate a

new image x, starting with the noise tensor zn sampled from a Gaussian

distribution.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 73 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 9.6

While both diffusion models and flow-based models are generative models aiming

to learn complex data distributions, they approach the problem from different

angles. Flow-based models use deterministic invertible transformations, while

diffusion models use the aforementioned stochastic diffusion process.

Recent projects have established state-of-the-art performance in generating high-

quality images with realistic details and textures. Diffusion models are also easier

to train than GANs. The downside of diffusion models, however, is that they are

slower to sample from since they require running a series of sequential steps,

similar to flow-based models and autoregressive models. This can make diffusion

models less practical for some applications requiring fast sampling.

Consistency Models

Consistency models train a neural network to map a noisy image to a clean one.

The network is trained on a dataset of pairs of noisy and clean images and learns

to identify patterns in the clean images that are modified by noise. Once the

network is trained, it can be used to generate reconstructed images from noisy

images in one step.

Consistency model training employs an ordinary differential equation (ODE)

trajectory, a path that a noisy image follows as it is gradually denoised. The ODE

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 74 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

trajectory is defined by a set of differential equations that describe how the noise

in the image changes over time, as illustrated in Figure 9.7.

Figure 9.7

As Figure 9.7 demonstrates, we can think of consistency models as models that

learn to map any point from a probability flow ODE, which smoothly converts data

to noise, to the input.

At the time of writing, consistency models are the most recent type of generative

AI model. Based on the original paper proposing this method, consistency models

rival diffusion models in terms of image quality. Consistency models are also

faster than diffusion models because they do not require an iterative process to

generate images; instead, they generate images in a single step.

However, while consistency models allow for faster inference, they are still

expensive to train because they require a large dataset of pairs of noisy and clean

images.

Recommendations
Deep Boltzmann machines are interesting from a historical perspective since they

were one of the pioneering models to effectively demonstrate the concept of

unsupervised learning. Flow-based and autoregressive models may be useful

when you need to estimate exact likelihoods. However, other models are usually

the first choice when it comes to generating high-quality images.

In particular, VAEs and GANs have competed for years to generate the best high-

fidelity images. However, in 2022, diffusion models began to take over image

generation almost entirely. Consistency models are a promising alternative to

diffusion models, but it remains to be seen whether they become more widely

adopted to generate state-of-the-art results. The trade-off here is that sampling

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 75 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

from diffusion models is generally slower since it involves a sequence of noise-

removal steps that must be run in order, similar to autoregressive models. This

can make diffusion models less practical for some applications requiring fast

sampling.

Exercises
9-1. How would we evaluate the quality of the images generated by a generative

AI model?

9-2. Given this chapter's description of consistency models, how would we use

them to generate new images?

References
The original paper proposing variational autoencoders: Diederik P. Kingma

and Max Welling, "Auto-Encoding Variational Bayes"? (2013),

https://arxiv.org/abs/1312.6114.

The paper introducing generative adversarial networks: Ian J. Goodfellow et

al., "Generative Adversarial Networks"? (2014),

https://arxiv.org/abs/1406.2661.

The paper introducing NICE: Laurent Dinh, David Krueger, and Yoshua Bengio,

"NICE: Non-linear Independent Components Estimation"? (2014),

https://arxiv.org/abs/1410.8516.

The paper proposing the autoregressive PixelCNN model: Aaron van den Oord

et al., "Conditional Image Generation with PixelCNN Decoders"? (2016),

https://arxiv.org/abs/1606.05328.

The paper introducing the popular Stable Diffusion latent diffusion model:

Robin Rombach et al., "High-Resolution Image Synthesis with Latent Diffusion

Models"? (2021), https://arxiv.org/abs/2112.10752.

The Stable Diffusion code implementation: https://github.com/Comp

Vis/stable-diffusion.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 76 页，共 239 页

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1606.05328
https://arxiv.org/abs/2112.10752
https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion
https://github.com/ningg/Machine-Learning-Q-and-AI

The paper originally proposing consistency models: Yang Song et al.,

"Consistency Models"? (2023), https://arxiv.org/abs/2303.01469.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 77 页，共 239 页

https://arxiv.org/abs/2303.01469
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 10: Sources of Randomness
What are the common sources of randomness when training deep neural

networks that can cause non-reproducible behavior during training and

inference?

When training or using machine learning models such as deep neural networks,

several sources of randomness can lead to different results every time we train or

run these models, even though we use the same overall settings. Some of these

effects are accidental and some are intended. The following sections categorize

and discuss these various sources of randomness.

Tips:

在训练和使⽤机器学习模型时，如深度神经⽹络，随机性会导致每次 训

练 或 运⾏ 模型时得到不同的结果，即使我们使⽤相同的配置。

这些随机性可能是 偶然 的，也可能是 故意 的。

Optional hands-on examples for most of these categories are provided in the

supplementary/q10-random-sources subfolder at

https://github.com/rasbt/MachineLearning-QandAI-book.

Model Weight Initialization
All common deep neural network frameworks, including TensorFlow and PyTorch,

randomly initialize the weights and bias units at each layer by default. This means

that the final model will be different every time we start the training. The reason

these trained models will differ when we start with different random weights is

the nonconvex nature of the loss, as illustrated in Figure 10.1. As the figure shows,

the loss will converge to different local minima depending on where the initial

starting weights are located.

Tips: 初始化权重，会导致不同的局部最优解。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 78 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 10.1

In practice, it is therefore recommended to run the training (if the computational

resources permit) at least a handful of times; unlucky initial weights can

sometimes cause the model not to converge or to converge to a local minimum

corresponding to poorer predictive accuracy.

Tips: 实践中，建议 ⾄少 运⾏ 训练⼏次 ，以避免不幸运的初始权重，导致

模型不收敛或收敛到较差的局部最优解。

However, we can make the random weight initialization deterministic by seeding

the random generator. For instance, if we set the seed to a specific value like 123,

the weights will still initialize with small random values. Nonetheless, the neural

network will consistently initialize with the same small random weights, enabling

accurate reproduction of results.

Tips: 通过设置 随机种⼦ ，可以使得 初始化 权重参数是 确定的 。

Dataset Sampling and Shuffling
When we train and evaluate machine learning models, we usually start by dividing

a dataset into training and test sets. This requires random sampling since we have

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 79 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

to decide which examples we put into a training set and which examples we put

into a test set.

In practice, we often use model evaluation techniques such as k-fold cross-

validation or holdout validation. In holdout validation, we split the training set

into training , validation , and test datasets, which are also sampling

procedures influenced by randomness. Similarly, unless we use a fixed random

seed, we get a different model each time we partition the dataset or tune or

evaluate the model using k-fold cross-validation since the training partitions will

differ.

Tips:

在训练和评估机器学习模型时，我们通常将数据集分为 训练集 、 验证

集 和 测试集 。

这需要 随机采样 ，因为我们必须决定将哪些样本放⼊训练集，哪些放⼊

验证集，哪些放⼊测试集。

除⾮我们使⽤固定的随机种⼦，否则每次划分数据集或使⽤ k 折交叉验

证时，我们都会得到不同的模型。

Nondeterministic Algorithms
We may include random components and algorithms depending on the

architecture and hyperparameter choices. A popular example of this is dropout.

Dropout works by randomly setting a fraction of a layer's units to zero during

training, which helps the model learn more robust and generalized

representations. This "dropping out" is typically applied at each training iteration

with a probability p, a hyperparameter that controls the fraction of units dropped

out. Typical values for p are in the range of 0.2 to 0.8.

To illustrate this concept, Figure 10.2 shows a small neural network where

dropout randomly drops a subset of the hidden layer nodes in each forward pass

during training.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 80 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 10.2

To create reproducible training runs, we must seed the random generator before

training with dropout (analogous to seeding the random generator before

initializing the model weights). During inference, we need to disable dropout to

guarantee deterministic results. Each deep learning framework has a specific

setting for that purpose -- a PyTorch example is included in the

supplementary/q10-random-sources subfolder at

https://github.com/rasbt/MachineLearning-QandAI-book.

Tips:

为了创建可复现的训练运⾏，我们必须在训练前设置随机种⼦（类似于

在初始化模型权重之前设置随机种⼦）。

在推理时，我们需要禁⽤ dropout ，以保证结果的确定性。

每个深度学习框架都有特定的设置，以实现这⼀点。

Different Runtime Algorithms
The most intuitive or simplest implementation of an algorithm or method is not

always the best one to use in practice. For example, when training deep neural

networks, we often use efficient alternatives and approximations to gain speed

and resource advantages during training and inference.

A popular example is the convolution operation used in convolutional neural

networks. There are several possible ways to implement the convolution

operation:

The classic direct convolution The common implementation of discrete

convolution via an element-wise product between the input and the window,

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 81 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

followed by summing the result to get a single number. (See Chapter [ch12] for a

discussion of the convolution operation.)

FFT-based convolution Uses fast Fourier transform (FFT) to convert the

convolution into an element-wise multiplication in the frequency domain.

Winograd-based convolution An efficient algorithm for small filter sizes (like

 that reduces the number of multiplications required for the convolution.

Different convolution algorithms have different trade-offs in terms of memory

usage, computational complexity, and speed. By default, libraries such as the

CUDA Deep Neural Network library (cuDNN), which are used in PyTorch and

TensorFlow, can choose different algorithms for performing convolution

operations when running deep neural networks on GPUs. However, the

deterministic algorithm choice has to be explicitly enabled. In PyTorch, for

example, this can be done by setting

While these approximations yield similar results, subtle numerical differences can

accumulate during training and cause the training to converge to slightly different

local minima.

Tips: 算法⾃身也会带来随机性，特别是不同优化算法实现，本身得到的就

是近似效果。

不同的卷积算法在 内存 使⽤、 计算复杂度 和 速度 ⽅⾯有不同的权衡。

默认情况下，PyTorch和TensorFlow等库中的 CUDA Deep Neural

Network library （ cuDNN ）可以选择不同的算法来执⾏卷积操作。

但是，确定性算法的选择必须显式启⽤。

在PyTorch中，可以通过设置

torch.use_deterministic_algorithms(True) 来启⽤确定性算法。

Hardware and Drivers

3 × 3

torch.use_deterministic_algorithms(True)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 82 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Training deep neural networks on different hardware can also produce different

results due to small numeric differences, even when the same algorithms are used

and the same operations are executed. These differences may sometimes be due

to different numeric precision for floating-point operations. However, small

numeric differences may also arise due to hardware and software optimization,

even at the same precision.

Tips: 硬件和驱动也会带来随机性，特别是不同硬件平台，不同优化库，不

同优化算法实现，本身得到的就是近似效果。

不同的 数值精度 ，会导致不同的结果。

不同的 硬件 和 软件 优化，会导致不同的结果。

For instance, different hardware platforms may have specialized optimizations or

libraries that can slightly alter the behavior of deep learning algorithms. To give

one example of how different GPUs can produce different modeling results, the

following is a quotation from the official NVIDIA documentation: "Across different

architectures, no cuDNN routines guarantee bit-wise reproducibility. For example,

there is no guarantee of bit-wise reproducibility when comparing the same

routine run on NVIDIA and NVIDIA [. . .] and NVIDIA

Ampere architecture."?

Tips:

不同的硬件平台可能具有专⻔的优化或库，可以稍微改变深度学习算法

的性能。

例如，不同的GPU可以产⽣不同的建模结果。

Randomness and Generative AI
Besides the various sources of randomness mentioned earlier, certain models may

also exhibit random behavior during inference that we can think of as

"randomness by design."? For instance, generative image and language models

may create different results for identical prompts to produce a diverse sample of

results. For image models, this is often so that users can select the most accurate

and aesthetically pleasing image. For language models, this is often to vary the

responses, for example, in chat agents, to avoid repetition.

V oltaTM TuringTM

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 83 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips:

除了前⾯提到的各种随机性来源，某些模型在推理时也可能表现出随机

⾏为，我们可以将其视为“设计上的随机性”。

例如，⽣成式图像和语⾔模型可能会对相同的提示产⽣不同的结果，以

产⽣多样化的结果样本。

对于图像模型，这通常是为了让⽤户选择最准确和最吸引⼈的图像。

对于语⾔模型，这通常是为了避免重复，例如在聊天代理中。

The intended randomness in generative image models during inference is often

due to sampling different noise values at each step of the reverse process. In

diffusion models, a noise schedule defines the noise variance added at each step

of the diffusion process.

Tips:

在⽣成式图像模型中，推理时的随机性，通常是由于在反向过程中对不

同的 噪声值 进⾏采样。

在扩散模型中， 噪声调度 定义了在扩散过程中添加的 噪声⽅差 。

Autoregressive LLMs like GPT tend to create different outputs for the same input

prompt (GPT will be discussed at greater length in Chapters [ch14] and [ch17]).

The ChatGPT user interface even has a Regenerate Response button for that

purpose. The ability to generate different results is due to the sampling strategies

these models employ. Techniques such as top-k sampling, nucleus sampling, and

temperature scaling influence the model's output by controlling the degree of

randomness. This is a feature, not a bug, since it allows for diverse responses and

prevents the model from producing overly deterministic or repetitive outputs.

(See Chapter [ch09] for a more in-depth overview of generative AI and deep

learning models; see Chapter [ch17] for more detail on autoregressive LLMs.)

Tips:

⾃回归语⾔模型（如GPT）倾向于对相同的输⼊提示，产⽣不同的输

出。

这是因为这些模型，采⽤了不同的 采样策略 。

例如， top-*k*采样 、 核采样 和 温度缩放 等技术，通过控制随机性程

度，影响模型的输出。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 84 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Top-[k]{.upright} sampling, illustrated in Figure 10.3, works by sampling tokens

from the top k most probable candidates at each step of the next-word generation

process.

Figure 10.3

Given an input prompt, the language model produces a probability distribution

over the entire vocabulary (the candidate words) for the next token. Each token in

the vocabulary is assigned a probability based on the model's understanding of

the context. The selected top-k tokens are then renormalized so that the

probabilities sum to 1. Finally, a token is sampled from the renormalized top-k

probability distribution and is appended to the input prompt. This process is

repeated for the desired length of the generated text or until a stop condition is

met.

Nucleus sampling (also known as top-p sampling), illustrated in Figure 10.4, is an

alternative to top-k sampling.

Figure 10.4

Similar to top-k sampling, the goal of nucleus sampling is to balance diversity and

coherence in the output. However, nucleus and top-k sampling differ in how to

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 85 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

select the candidate tokens for sampling at each step of the generation process.

Top-k sampling selects the k most probable tokens from the probability

distribution produced by the language model, regardless of their probabilities.

The value of k remains fixed throughout the generation process. Nucleus

sampling, on the other hand, selects tokens based on a probability threshold p, as

shown in Figure 10.4. It then accumulates the most probable tokens in

descending order until their cumulative probability meets or exceeds the

threshold p. In contrast to top-k sampling, the size of the candidate set (nucleus)

can vary at each step.

Tips:

与top-k采样类似，核采样的⽬标是平衡输出中的多样性和连贯性。

然⽽，核采样和top-k采样在选择每个⽣成步骤中的候选标记时有所不

同。

top-k采样*从语⾔模型产⽣的概率分布中选择 概率最⾼ 的k*个标记，⽽

核采样**则根据 累计的概率阈值 p选择标记。

Exercises
10-1. Suppose we train a neural network with top-k or nucleus sampling where k

and p are hyperparameter choices. Can we make the model behave

deterministically during inference without changing the code?

10-2. In what scenarios might random dropout behavior during inference be

desired?

References
For more about different data sampling and model evaluation techniques, see

my article: "Model Evaluation, Model Selection, and Algorithm Selection in

Machine Learning"? (2018), https://arxiv.org/abs/1811.12808.

The paper that originally proposed the dropout technique: Nitish

Srivastavaetal.,"Dropout:ASimpleWaytoPreventNeuralNet- works from

Overfitting"? (2014), https://jmlr.org/papers/v15/sriva stava14a.html.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 86 页，共 239 页

https://arxiv.org/abs/1811.12808
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://github.com/ningg/Machine-Learning-Q-and-AI

A detailed paper on FFT-based convolution: Lu Chi, Borui Jiang, and Yadong

Mu, "Fast Fourier Convolution"? (2020),

https://dl.acm.org/doi/abs/10.5555/3495724.3496100.

Details on Winograd-based convolution: Syed Asad Alam et al., "Winograd

Convolution for Deep Neural Networks: Efficient Point Selection"? (2022),

https://arxiv.org/abs/2201.10369.

More information about the deterministic algorithm settings in PyTorch:

https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html.

For details on the deterministic behavior of NVIDIA graphics cards, see the

"Reproducibility"? section of the official NVIDIA documentation:

https://docs.nvidia.com/deeplearning/cudnn/developer-

guide/index.html#reproducibility.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 87 页，共 239 页

https://dl.acm.org/doi/abs/10.5555/3495724.3496100
https://arxiv.org/abs/2201.10369
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 11: Calculating the Number
of Parameters
How do we compute the number of parameters in a convolutional neural

network, and why is this information useful?

Knowing the number of parameters in a model helps gauge the model's size,

which affects storage and memory requirements. The following sections will

explain how to compute the convolutional and fully connected layer parameter

counts.

Tips: 模型参数的数量，是衡量模型⼤⼩（存储空间⼤笑）的重要指标，⽤

于估算所需的存储空间。重点关注 卷积层 和 全连接层 。

How to Find Parameter Counts
Suppose we are working with a convolutional network that has two

convolutional layers with kernel size 5 and kernel size 3, respectively.

The first convolutional layer has 3 input channels and 5 output channels,

and the second one has 5 input channels and 12 output channels.

The stride of these convolutional layers is 1.

Furthermore, the network has two pooling layers ,

one with a kernel size of 3 and a stride of 2,

and another with a kernel size of 5 and a stride of 2.

It also has two fully connected hidden layers with 192 and 128 hidden

units each, where the output layer is a classification layer for 10 classes.

The architecture of this network is illustrated in Figure 11.1.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 88 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 11.1

What is the number of trainable parameters in this convolutional network? We can

approach this problem from left to right, computing the number of parameters for

each layer and then summing up these counts to obtain the total number of

parameters. Each layer's number of trainable parameters consists of weights and

bias units.

Convolutional Layers

In a convolutional layer , the number of weights depends on the kernel's

width and height and the number of input and output channels. The number of

bias units depends on the number of output channels only. To illustrate the

computation step by step, suppose we have a kernel width and height of 5, one

input channel, and one output channel, as illustrated in Figure 11.2.

Tips: 卷积层的参数数量，取决于 卷积核 (kernel)的宽度、⾼度、输⼊通道

数和输出通道数。

Figure 11.2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 89 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In this case, we have 26 parameters, since we have weights via the

kernel plus the bias unit. The computation to determine an output value or pixel

 is , where represents an input pixel, represents a

weight parameter of the kernel, and is the bias unit.

Tips: ⼀个卷积核 kernel 的参数量， weights = 宽度 x ⾼度。

Now, suppose we have three input channels, as illustrated in Figure 11.3.

Figure 11.3

In that case, we compute the output value by performing the aforementioned

operation, , for each input channel and then add the bias unit. For

three input channels, this would involve three different kernels with three sets of

weights:

Since we have three sets of weights (for), we

have parameters in this convolutional layer.

Tips: 每个输⼊通道，对应的卷积核 kernel ，都是独⽴的参数.

We use one kernel for each output channel, where each kernel is unique to a

given output channel. Thus, if we extend the number of output channels from one

to five, as shown in Figure 11.4, we extend the number of parameters by a factor

of 5.

In other words, if the kernel for one output channel has 76 parameters, the 5

kernels required for the five output channels will have

parameters.

5 × 5 = 25

z z = b + w x ∑
j j j x j w j

b

 w x ∑j j j

z = w x +
j

∑ j

(1)
j w x +

j

∑ j

(2)
j w x +

j

∑ j

(3)
j b

w ,w , andw(1) (2) (3) j = [1, 25]
3 × 25 + 1 = 76

5 × 76 = 380

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 90 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 11.4

Returning to the neural network architecture illustrated in Figure 11.1 at the

beginning of this section, we compute the number of parameters in the

convolutional layers based on the kernel size and number of input and output

channels. For example, the first convolutional layer has three input channels, five

output channels, and a kernel size of 5. Thus, its number of parameters is

.

The second convolutional layer, with five input channels, 12 output channels, and

a kernel size of 3, has parameters.

Since the pooling layers do not have any trainable parameters, we can count

 for the convolutional part of this architecture.

Next, let's see how we can compute the number of parameters of fully connected

layers.

Fully Connected Layers

Counting the number of parameters in a fully connected layer is relatively

straightforward. A fully connected node connects each input node to each output

node, so the number of weights is the number of inputs times the number of

outputs plus the bias units added to the output. For example, if we have a fully

connected layer with five inputs and three outputs, as shown in Figure 11.5, we

have weights and three bias units, that is, 18 parameters total.

Tips: ⼀个全连接层 fully connected layer 的参数量， weights = 输

⼊节点数 x 输出节点数。

5 ×
(5 × 5 × 3) + 5 = 380

12 × (3 × 3 × 5) + 12 = 552

380 + 552 = 932

5 × 3 = 15

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 91 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 11.5

Returning once more to the neural network architecture illustrated in Figure 11.1,

we can now calculate the parameters in the fully connected layers as follows:

 in the first fully connected layer and

 in the second fully connected layer, the output layer.

Hence, we have in the fully connected part of this

network.

After adding the 932 parameters from the convolutional layers and the 25,994

parameters from the fully connected layers, we can conclude that this network's

total number of parameters is .

As a bonus, interested readers can find PyTorch code to compute the number of

parameters programmatically in the supplementary/q11-conv-size subfolder at

192 × 128 + 128 = 24, 704 128 ×
10 + 10 = 1, 290

24, 704 + 1, 290 = 25, 994

26, 926

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 92 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

https://github.com/rasbt/MachineLearning-QandAI-book.

Practical Applications
Why do we care about the number of parameters at all? First, we can use this

number to estimate a model's complexity. As a rule of thumb, the more

parameters there are, the more training data we'll need to train the model well.

Tips: 模型 参数的数量 ，是衡量模型 复杂度 的重要指标，⽤于估算所需的

训练数据量 。

The number of parameters also lets us estimate the size of the neural network,

which in turn helps us estimate whether the network can fit into GPU memory.

Although the memory requirement during training often exceeds the model size

due to the additional memory required for carrying out matrix multiplications and

storing gradients, model size gives us a ballpark sense of whether training the

model on a given hardware setup is feasible.

Tips: 模型参数的数量，是衡量模型 ⼤⼩ 的重要指标，⽤于估算模型是否能

fit 到 GPU 的 内存 中。

Exercises
11-1. Suppose we want to optimize the neural network using a plain stochastic

gradient descent (SGD) optimizer or the popular Adam optimizer. What are the

respective numbers of parameters that need to be stored for SGD and Adam?

11-2. Suppose we're adding three batch normalization (BatchNorm) layers: one

after the first convolutional layer, one after the second convolutional layer, and

another one after the first fully connected layer (we typically do not want to add

BatchNorm layers to the output layer). How many additional parameters do these

three BatchNorm layers add to the model?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 93 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 12: Fully Connected and
Convolutional Layers
Under which circumstances can we replace fully connected layers with

convolutional layers to perform the same computation?

Replacing fully connected layers with convolutional layers can offer advantages in

terms of hardware optimization, such as by utilizing specialized hardware

accelerators for convolution operations. This can be particularly relevant for edge

devices.

Tips: 卷积层 替代 全连接层 ，有下⾯收益

卷积操作可以 硬件加速

这在 边缘设备 上⾮常关键。

There are exactly two scenarios in which fully connected layers and convolutional

layers are equivalent: when the size of the convolutional filter is equal to the size

of the receptive field and when the size of the convolutional filter is 1. As an

illustration of these two scenarios, consider a fully connected layer with two input

and four output units, as shown in Figure 12.1.

Tips: 全连接层 和 卷积层 在两种情况下是 等价 的：

当 卷积核 的⼤⼩等于 感受野 的⼤⼩。

当 卷积核 的⼤⼩为 1 。

receptive field 感受野，在 CNN 和 RNN 中，有不同的含义。

在卷积神经⽹络 (CNN) 中，感受野是指⽹络中某个特定层的神经元在输

⼊图像上映射的区域⼤⼩（像素范围）。它是 空间 维度上的概念。

在 循环神经⽹络 (RNN) 中，感受野是 时间 维度上的概念。它衡量的是

当前状态在时间轴上向后能追溯到多远的输⼊信息。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 94 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 12.1

The fully connected layer in this figure consists of eight weights and two bias

units. We can compute the output nodes via the following dot products:

Node 1

Node 2

The following two sections illustrate scenarios in which convolutional layers can

be defined to produce exactly the same computation as the fully connected layer

described.

When the Kernel and Input Sizes Are Equal
Let's start with the first scenario, where the size of the convolutional filter is equal

to the size of the receptive field. Recall from Chapter [ch11] how we compute a

number of parameters in a convolutional kernel with one input channel and

multiple output channels. We have a kernel size of , one input channel, and

two output channels. The input size is also , a reshaped version of the four

inputs depicted in Figure 12.2.

w ×1,1 x +1 w ×1,2 x +2 w ×1,3 x +3 w ×1,4 x +4 b 1

w ×2,1 x +1 w ×2,2 x +2 w ×2,3 x +3 w ×2,4 x +4 b 2

2 × 2
2 × 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 95 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 12.2

If the convolutional kernel dimensions equal the input size, as depicted in Figure

12.2, there is no sliding window mechanism in the convolutional layer. For the

first output channel, we have the following set of weights:

For the second output channel, we have the following set of weights:

If the inputs are organized as

we calculate the first output channel as , where the

convolutional operator * is equal to an element-wise multiplication. In other

words, we perform an element-wise multiplication between two matrices,

and x, and then compute the output as the sum over these elements; this equals

the dot product in the fully connected layer. Lastly, we add the bias unit. The

computation for the second output channel works analogously:

.

As a bonus, the supplementary materials for this book include PyTorch code to

show this equivalence with a hands-on example in the supplementary/q12-fc-

cnn-equivalence subfolder at https://github.com/rasbt/MachineLearning-

QandAI-book.

W =1 [w 1,1

w 1,3

w 1,2

w 1,4
]

W =2 [w 2,1

w 2,3

w 2,2

w 2,4
]

x = [x 1

x 3

x 2

x 4
]

o =1 (W ×∑i 1 x) +i b 1

W 1

o =2

 (W ×∑
i 2 x) +i b 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 96 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

When the Kernel Size Is 1
The second scenario assumes that we reshape the input into an input "image"?

with dimensions where the number of "color channels"? equals the

number of input features, as depicted in Figure 12.3.

Figure 12.3

Each kernel consists of a stack of weights equal to the number of input channels.

For instance, for the first output layer, the weights are

while the weights for the second channel are:

To get a better intuitive understanding of this computation, check out the

illustrations in Chapter [ch11], which describe how to compute the parameters in

a convolutional layer.

Recommendations
The fact that fully connected layers can be implemented as equivalent

convolutional layers does not have immediate performance or other advantages

on standard computers. However, replacing fully connected layers with

convolutional layers can offer advantages in combination with developing

specialized hardware accelerators for convolution operations.

Moreover, understanding the scenarios where fully connected layers are

equivalent to convolutional layers aids in understanding the mechanics of these

1 × 1

W =1 [w 1
(1)

w 1
(2)

w 1
(3)

w 1
(4)]

W =2 [w 2
(1)

w 2
(2)

w 2
(3)

w 2
(4)]

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 97 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

layers. It also lets us implement convolutional neural networks without any use of

fully connected layers, if desired, to simplify code implementations.

Tips: 进⼀步，理解 卷积层 和 全连接层 的等价性，有助于理解这些层的机

制。

此外，如果需要，我们可以实现卷积神经⽹络，⽽不使⽤任何全连接层，以

简化代码实现。

Exercises
12-1. How would increasing the stride affect the equivalence discussed in this

chapter?

12-2. Does padding affect the equivalence between fully connected layers and

convolutional layers?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 98 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 13: Large Training Sets for
Vision Transformers
Why do vision transformers (ViTs) generally require larger training sets than

convolutional neural networks (CNNs)?

Each machine learning algorithm and model encodes a particular set of

assumptions or prior knowledge, commonly referred to as inductive biases, in its

design. Some inductive biases are workarounds to make algorithms

computationally more feasible, other inductive biases are based on domain

knowledge, and some inductive biases are both.

CNNs and ViTs can be used for the same tasks, including image classification,

object detection, and image segmentation. CNNs are mainly composed of

convolutional layers, while ViTs consist primarily of multi-head attention blocks

(discussed in Chapter [ch08] in the context of transformers for natural language

inputs).

CNNs have more inductive biases that are hardcoded as part of the algorithmic

design, so they generally require less training data than ViTs. In a sense, ViTs are

given more degrees of freedom and can or must learn certain inductive biases

from the data (assuming that these biases are conducive to optimizing the

training objective). However, everything that needs to be learned requires more

training examples.

The following sections explain the main inductive biases encountered in CNNs

and how ViTs work well without them.

Inductive Biases in CNNs
The following are the primary inductive biases that largely define how CNNs

function:

Local connectivity In CNNs, each unit in a hidden layer is connected to only a

subset of neurons in the previous layer. We can justify this restriction by assuming

that neighboring pixels are more relevant to each other than pixels that are

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 99 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

farther apart. As an intuitive example, consider how this assumption applies to

the context of recognizing edges or contours in an image.

Weight sharing Via the convolutional layers, we use the same small set of weights

(the kernels or filters) throughout the whole image. This reflects the assumption

that the same filters are useful for detecting the same patterns in different parts of

the image.

Hierarchical processing CNNs consist of multiple convolutional layers to extract

features from the input image. As the network progresses from the input to the

output layers, low-level features are successively combined to form increasingly

complex features, ultimately leading to the recognition of more complex objects

and shapes. Furthermore, the convolutional filters in these layers learn to detect

specific patterns and features at different levels of abstraction.

Spatial invariance CNNs exhibit the mathematical property of spatial invariance,

meaning the output of a model remains consistent even if the input signal is

shifted to a different location within the spatial domain. This characteristic arises

from the combination of local connectivity, weight sharing, and the hierarchical

architecture mentioned earlier.

The combination of local connectivity, weight sharing, and hierarchical processing

in a CNN leads to spatial invariance, allowing the model to recognize the same

pattern or feature regardless of its location in the input image.

Translation invariance is a specific case of spatial invariance in which the output

remains the same after a shift or translation of the input signal in the spatial

domain. In this context, the emphasis is solely on moving an object to a different

location within an image without any rotations or alterations of its other

attributes.

In reality, convolutional layers and networks are not truly translation-invariant;

rather, they achieve a certain level of translation equivariance. What is the

difference between translation invariance and equivariance? Translation

invariance means that the output does not change with an input shift, while

translation equivariance implies that the output shifts with the input in a

corresponding manner. In other words, if we shift the input object to the right, the

results will correspondingly shift to the right, as illustrated in Figure 13.1.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 100 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 13.1

As Figure 13.1 shows, under translation invariance, we get the same output

pattern regardless of the order in which we apply the operations: transformation

followed by translation or translation followed by transformation.

As mentioned earlier, CNNs achieve translation equivariance through a

combination of their local connectivity, weight sharing, and hierarchical

processing properties. Figure 13.2 depicts a convolutional operation to illustrate

the local connectivity and weight-sharing priors. This figure demonstrates the

concept of translation equivariance in CNNs, in which a convolutional filter

captures the input signal (the two dark blocks) irrespective of where it is located

in the input.

Figure 13.2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 101 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 13.2 shows a input image that consists of two nonzero pixel values

in the upper-left corner (top portion of the figure) or upper-right corner (bottom

portion of the figure). If we apply a convolutional filter to these two input

image scenarios, we can see that the output feature maps contain the same

extracted pattern, which is on either the left (top of the figure) or the right

(bottom of the figure), demonstrating the translation equivariance of the

convolutional operation.

For comparison, a fully connected network such as a multilayer perceptron lacks

this spatial invariance or equivariance. To illustrate this point, picture a multilayer

perceptron with one hidden layer. Each pixel in the input image is connected with

each value in the resulting output. If we shift the input by one or more pixels, a

different set of weights will be activated, as illustrated in Figure 13.3.

Figure 13.3

Like fully connected networks, ViT architecture (and transformer architecture in

general) lacks the inductive bias for spatial invariance or equi- variance. For

instance, the model produces different outputs if we place the same object in two

different spatial locations within an image. This is not ideal, as the semantic

meaning of an object (the concept that an object represents or conveys) remains

the same based on its location. Consequently, it must learn these invariances

3 × 3

2 × 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 102 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

directly from the data. To facilitate learning useful patterns present in CNNs

requires pretraining over a larger dataset.

A common workaround for adding positional information in ViTs is to use relative

positional embeddings (also known as relative positional encodings) that consider

the relative distance between two tokens in the input sequence. However, while

relative embeddings encode information that helps transformers keep track of the

relative location of tokens, the transformer still needs to learn from the data

whether and how far spatial information is relevant for the task at hand.

ViTs Can Outperform CNNs
The hardcoded assumptions via the inductive biases discussed in previous

sections reduce the number of parameters in CNNs substantially compared to fully

connected layers. On the other hand, ViTs tend to have larger numbers of

parameters than CNNs, which require more training data. (Refer to Chapter [ch11]

for a refresher on how to precisely calculate the number of parameters in fully

connected and convolutional layers.)

ViTs may underperform compared to popular CNN architectures without

extensivep retraining, but they can perform very well with a sufficiently large

pretraining dataset. In contrast to language transformers, where unsupervised

pretraining (such as self-supervisedlearning, disussed in Chapter [ch02]) is a

preferred choice, vision transformers are often pretrained using large, labeled

datasets like ImageNet, which provides millions of labeled images for training,

and regular supervised learning.

An example of ViTs surpassing the predictive performance of CNNs, given enough

data, can be observed from initial research on the ViT architecture, as shown in

the paper "An Image Is Worth 16x16 Words: Transformers for Image Recognition at

Scale."? This study compared ResNet, a type of convolutional network, with the

original ViT design using different dataset sizes for pretraining. The findings also

showed that the ViT model excelled over the convolutional approach only after

being pretrained on a minimum of 100 million images.

Inductive Biases in ViTs

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 103 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

ViTs also possess some inductive biases. For example, vision transformers patchify

the input image to process each input patch individually. Here, each patch can

attend to all other patches so that the model learns relationships between far-

apart patches in the input image, as illustrated in Figure 13.4.

Figure 13.4

The patchify inductive bias allows ViTs to scale to larger image sizes without

increasing the number of parameters in the model, which can be computationally

expensive. By processing smaller patches individually, ViTs can efficiently capture

spatial relationships between image regions while benefiting from the global

context captured by the self-attention mechanism.

This raises another question: how and what do ViTs learn from the training data?

ViTs learn more uniform feature representations across all layers, with self-

attention mechanisms enabling early aggregation of global information. In

addition, the residual connections in ViTs strongly propagate features from lower

to higher layers, in contrast to the more hierarchical structure of CNNs.

ViTs tend to focus more on global than local relationships because their self-

attention mechanism allows the model to consider long-range dependencies

between different parts of the input image. Consequently, the self-attention layers

in ViTs are often considered low-pass filters that focus more on shapes and

curvature.

In contrast, the convolutional layers in CNNs are often considered high-pass filters

that focus more on texture. However, keep in mind that convolutional layers can

act as both high-pass and low-pass filters, depending on the learned filters at

each layer. High-pass filters detect an image's edges, fine details, and texture,

while low-pass filters capture more global, smooth features and shapes. CNNs

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 104 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

achieve this by applying convolutional kernels of varying sizes and learning

different filters at each layer.

Recommendations
ViTs have recently begun outperforming CNNs if enough data is available for

pretraining. However, this doesn't make CNNs obsolete, as methods such as the

popular EfficientNetV2 CNN architecture are less memory and data hungry.

Moreover, recent ViT architectures don't rely solely on large datasets, parameter

numbers, and self-attention. Instead, they have taken inspiration from CNNs and

added soft convolutional inductive biases or even complete convolutional layers

to get the best of both worlds.

In short, vision transformer architectures without convolutional layers generally

have fewer spatial and locality inductive biases than convolutional

neuralnetworks. Consequently, vision transformers need to learn data-related

concepts such as local relationships among pixels. Thus, vision transformers

require more training data to achieve good predictive performance and produce

acceptable visual representations in generative modeling contexts.

Exercises

13-1. Consider the patchification of the input images shown in Figure 13.4. The

size of the resulting patches controls a computational and predictive performance

trade-off. The optimal patch size depends on the application and desired trade-off

between computational cost and model performance. Do smaller patches typically

result in higher or lower computational costs?

13-2. Following up on the previous question, do smaller patches typically lead to a

higher or lower prediction accuracy?

References
The paper proposing the original vision transformer model: Alexey Dosovitskiy

et al., "An Image Is Worth 16x16 Words: Transformers for Image Recognition at

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 105 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Scale"? (2020), https://arxiv.org/abs/2010.11929.

A workaround for adding positional information in ViTs is to use relative

positional embeddings: Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani,

"Self-Attention with Relative Position Representations"? (2018),

https://arxiv.org/abs/1803.02155.

Residual connections in ViTs strongly propagate features from lower to higher

layers, in contrast to the more hierarchical structure of CNNs: Maithra Raghu

et al., "Do Vision Transformers See Like Convolutional Neural Networks?"?

(2021), https://arxiv.org/abs/2108.08810.

AdetailedresearcharticlecoveringtheEfficientNetV2CNNarchitecture:MingxingTanandQuocV.Le

SmallerMo- delsandFasterTraining"?(2021),https://arxiv.org/abs/2104.00298.

A ViT architecture that also incorporates convolutional layers: StÃ©phane

d'Ascoli et al., "ConViT: Improving Vision Transform- ers with Soft

Convolutional Inductive Biases"? (2021), https://arxiv.org/abs/2103.10697.

Another example of a ViT using convolutional layers: Haiping Wu et al., "CvT:

Introducing Convolutions to Vision Transformers"? (2021),

https://arxiv.org/abs/2103.15808.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 106 页，共 239 页

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1803.02155
https://arxiv.org/abs/2108.08810
https://arxiv.org/abs/2104.00298
https://arxiv.org/abs/2103.10697
https://arxiv.org/abs/2103.15808
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 14: The Distributional
Hypothesis
What is the distributional hypothesis in natural language processing

(NLP)? Where is it used, and how far does it hold true?

The distributional hypothesis is a linguistic theory suggesting that words

occurring in the same contexts tend to have similar meanings, according to the

original source, "Distributional Structure"? by Zellig S. Harris. Succinctly, the more

similar the meanings of two words are, the more often they appear in similar

contexts.

Tips: 分布假设（distributional hypothesis），也称为分布语义学

（distributional semantics），⽤于描述单词在上下⽂中的分布模式。它认

为，在 相似的上下⽂ 中出现的 单词 往往具有 相似的含义 。

Consider the sentence in Figure 14.1, for example. The words cats and dogs often

occur in similar contexts, and we could replace cats with dogs without making the

sentence sound awkward. We could also replace cats with hamsters, since both

are mammals and pets, and the sentence would still sound plausible. However,

replacing cats with an unrelated word such as sandwiches would render the

sentence clearly wrong, and replacing cats with the unrelated word driving would

also make the sentence grammatically incorrect.

Tips: 图1.1中的句⼦。cats和dogs经常出现在相似的上下⽂中，我们可以将

cats替换为dogs，⽽不会让句⼦听起来奇怪。

我们也可以将cats替换为hamsters，因为它们都是哺乳动物和宠物，句⼦

听起来仍然合理。

但是，如果将cats替换为不相关的单词sandwiches，句⼦会变得明显错

误，

如果将cats替换为不相关的单词driving，句⼦也会变得语法错误。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 107 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 14.1

It is easy to construct counterexamples using polysemous words, that is, words

that have multiple meanings that are related but not identical. For example,

consider the word bank. As a noun, it can refer to a financial institution, the

"rising ground bordering a river,"? the "steep incline of a hill,"? or a "protective

cushioning rim"? (according to the Merriam-Webster dictionary). It can even be a

verb: to bank on something means to rely or depend on it. These different

meanings have different distributional properties and may not always occur in

similar contexts.

Nonetheless, the distributional hypothesis is quite useful. Word embeddings

(introduced in Chapter [ch01]) such as Word2vec, as well as many large language

transformer models, rely on this idea. This includes the masked language model

in BERT and the next-word pretraining task used in GPT.

Tips: 尽管存在反例，分布假设在实际应⽤中⾮常有⽤。

Word2vec 等词嵌⼊（word embeddings）模型以及许多 ⼤型语⾔模型

（large language models）都基于这个概念。

这包括 BERT 中的 掩码 语⾔模型，和 GPT 中的 下⼀个词 预训练任务。

Word2vec, BERT, and GPT
The Word2vec approach uses a simple, two-layer neuralnetwork to encode

words into embedding vectors such that the embedding vectors of similar words

are both semantically and syntactically close. There are two ways to train a

Word2vec model: the continuous bag-of-words (CBOW) approach and the

skip-gram approach. When using CBOW, the Word2vec model learns to predict

the current words by using the surrounding context words. Conversely, in the

skip-gram model, Word2vec predicts the context words from a selected word.

While skip-gram is more effective for infrequent words, CBOW is usually faster to

train.

Tips: FIXME 跳字模型 没理解？？？

Word2vec 是⼀种使⽤简单两层神经⽹络将单词编码为嵌⼊向量的⽅

法。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 108 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

有两种训练Word2vec模型的⽅法： 连续词袋 （CBOW）⽅法和 跳字

（skip-gram）⽅法。

当使⽤CBOW时，Word2vec模型学习通过使⽤周围上下⽂单词来预测当

前单词。

相反，在跳字模型中，Word2vec从选定的单词预测上下⽂单词。

尽管跳字模型对于不常⻅的单词更有效，但CBOW通常训练速度更快。

After training, word embeddings are placed within the vector space so that words

with common contexts in the corpus--that is, words with semantic and syntactic

similarities--are positioned close to each other, as illustrated in Figure 14.2.

Conversely, dissimilar words are located farther apart in the embedding space.

Figure 14.2

BERT is an LLM based on the transformer architecture (see Chapter [ch08]) that

uses a masked language modeling approach that involves masking (hiding) some

of the words in a sentence. Its task is to predict these masked words based on the

other words in the sequence, as illustrated in Figure 14.3. This is a form of the

self-supervised learning used to pretrain LLMs (see Chapter [ch02] for more on

self-supervised learning). The pretrained model produces embeddings in which

similar words (or tokens) are close in the embedding space.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 109 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 14.3

GPT, which like BERT is also an LLM based on the transformer architecture,

functions as a decoder. Decoder-style models like GPT learn to predict subsequent

words in a sequence based on the preceding ones, as illustrated in Figure 14.4.

GPT contrasts with BERT, an encoder model, as it emphasizes predicting what

follows rather than encoding the entire sequence simultaneously.

Figure 14.4

Where BERT is a bidirectional language model that considers the whole input

sequence, GPT only strictly parses previous sequence elements. This means BERT

is usually better suited for classification tasks, whereas GPT is more suited for text

generation tasks. Similar to BERT, GPT produces high-quality contextualized word

embeddings that capture semantic similarity.

Tips:

BERT 是⼀种 双向 语⾔模型，考虑 整个输⼊序列 。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 110 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

GPT 只严格解析 前⼀个序列元素 。

这意味着 BERT 通常更适合分类任务，⽽ GPT 更适合⽂本⽣成任务。

与 BERT 类似， GPT 产⽣⾼质量的 上下⽂化单词嵌⼊ ，捕捉语义相似

性。

Does the Hypothesis Hold?
For large datasets, the distributional hypothesis more or less holds true, making it

quite useful for understanding and modeling language patterns, word

relationships, and semantic meanings. For example, this concept enables

techniques like word embedding and semantic analysis, which, in turn, facilitate

natural language processing tasks such as text classification, sentiment analysis,

and machine translation.

Tips:

对于⼤型数据集，分布假设或多或少是正确的，对于理解语⾔模式、单

词关系和语义含义⾮常有⽤。

例如，这个概念启⽤了像 词嵌⼊ 和 语义分析 这样的技术，这些技术反

过来⼜促进了⾃然语⾔处理任务，如 ⽂本分类 、 情感分析 和 机器翻

译 。

In conclusion, while there are counterexamples in which the distributional

hypothesis does not hold, it is a very useful concept that forms the cornerstone of

modern language transformer models.

Exercises
14-1. Does the distributional hypothesis hold true in the case of homophones, or

words that sound the same but have different meanings, such as there and their?

14-2. Can you think of another domain where a concept similar to the

distributional hypothesis applies? (Hint: think of other input modalities for neural

networks.)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 111 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

References
The original source describing the distributional hypothesis: Zellig S. Harris,

"Distributional Structure"? (1954), https://doi.org/10.1080/

00437956.1954.11659520.

The paper introducing the Word2vec model: Tomas Mikolov et al., "Efficient

Estimation of Word Representations in Vector Space"? (2013),

https://arxiv.org/abs/1301.3781.

The paper introducing the BERT model: Jacob Devlin et al., "BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding"?

(2018), https://arxiv.org/abs/1810.04805.

The paper introducing the GPT model: Alec Radford and Karthik Narasimhan,

"Improving Language Understanding by Generative Pre-Training"? (2018),

https://www.semanticscholar.org/paper/Improving -Language-

Understanding-by-Generative-Radford-Narasimhan/cd18800a0

fe0b668a1cc19f2ec95b5003d0a5035.

BERT produces embeddings in which similar words (or tokens) are close in the

embedding space: Nelson F. Liu et al., "Linguistic Knowledge and

Transferability of Contextual Representations"? (2019),

https://arxiv.org/abs/1903.08855.

The paper showing that GPT produces high-quality contextualized word

embeddings that capture semantic similarity: Fabio Petroni et al., "Language

Models as Knowledge Bases?"? (2019), https://arxiv.org/abs/1909.01066.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 112 页，共 239 页

https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1810.04805
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035
https://arxiv.org/abs/1903.08855
https://arxiv.org/abs/1909.01066
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 15: Data Augmentation for
Text
How is data augmentation useful, and what are the most common

augmentation techniques for text data?

Data augmentation is useful for artificially increasing dataset sizes to improve

model performance, such as by reducing the degree of overfitting, as discussed in

Chapter [ch05]. This includes techniques often used in computer vision models,

like rotation, scaling, and flipping.

Tips: 数据增强（ Data Augmentation ）是⼀种通过增加训练数据量，来提

⾼模型泛化能⼒的技术。

数据增强可以分为两类：

1. 基于规则的数据增强：通过规则⽣成新的数据，如同义词替换、单词删

除、单词位置交换、句⼦打乱、噪声注⼊等。

2. 基于模型的数据增强：通过模型⽣成新的数据，如 GAN 、 VAE 等。

数据增强通常包括以下⼏种技术：

1. 同义词替换（ Synonym Replacement ）：依赖同义词典，替换同义词；

建议设置替换频率和相似度阈值。

2. 单词删除（ Word Deletion ）：随机删除句⼦中的某些单词；建议设置

删除率。

3. 单词位置交换（ Word Position Swapping ）：随机交换句⼦中某些单

词的位置；建议设置交换率。

4. 句⼦打乱（ Sentence Shuffling ）：随机打乱句⼦中某些句⼦的顺

序；建议设置打乱率。

5. 噪声注⼊（ Noise Injection ）：在句⼦中添加⼀些随机噪声；建议设

置噪声率。

6. 回译（ Back Translation ）：将句⼦翻译成另⼀种语⾔，再翻译回

来；建议设置翻译模型。

7. 合成数据（ Synthetic Data ）：使⽤LLM⽣成新的数据；建议设置⽣成

模型。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 113 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Similarly, there are several techniques for augmenting text data. The most

common include synonym replacement, word deletion, word position swapping,

sentence shuffling, noise injection, back translation, and text generated by LLMs.

This chapter discusses each of these, with optional code examples in the

supplementary/q15-text-augment subfolder at

https://github.com/rasbt/MachineLearning-QandAI-book.

Synonym Replacement
In synonym replacement, we randomly choose words in a sentence -- often nouns,

verbs, adjectives, and adverbs -- and replace them with synonyms. For example,

we might begin with the sentence "The cat quickly jumped over the lazy dog,"?

and then augment the sentence as follows: "The cat rapidly jumped over the idle

dog."?

Synonym replacement can help the model learn that different words can have

similar meanings, thereby improving its ability to understand and generate text. In

practice, synonym replacement often relies on a thesaurus such as WordNet.

However, using this technique requires care, as not all synonyms are

interchangeable in all contexts. Most automatic text replacement tools have

settings for adjusting replacement frequency and similarity thresholds. However,

automatic synonym replacement is not perfect, and you might want to apply post-

processing checks to filter out replacements that might not make sense.

Tips: ⾃动 同义词替换 的结果并不准确，建议筛除不合适的替换结果。

Word Deletion
Word deletion is another data augmentation technique to help models learn.

Unlike synonym replacement, which alters the text by substituting words with

their synonyms, word deletion involves removing certain words from the text to

create new variants while trying to maintain the overall meaning of the sentence.

For example, we might begin with the sentence "The cat quickly jumped over the

lazy dog"? and then remove the word quickly: "The cat jumped over the lazy

dog."?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 114 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

By randomly deleting words in the training data, we teach the model to make

accurate predictions even when some information is missing. This can make the

model more robust when encountering incomplete or noisy data in real-world

scenarios. Also, by deleting nonessential words, we may teach the model to focus

on key aspects of the text that are most relevant to the task at hand.

However, we must be careful not to remove critical words that may significantly

alter a sentence's meaning. For example, it would be suboptimal to remove the

word cat in the previous sentence: "The quickly jumped over the lazy dog."? We

must also choose the deletion rate carefully to ensure that the text still makes

sense after words have been removed. Typical deletion rates might range from 10

percent to 20 percent, but this is a general guideline and could vary significantly

based on the specific use case.

Tips: 单词删除，有时候会删除掉⼀些重要的词语，导致句⼦不通顺，建议

设置删除率。⼀般删除率在 10% 到 20% 之间，但具体需要根据具体任务调

整。

Word Position Swapping
In word position swapping, also known as word shuffling or permutation, the

positions of words in a sentence are swapped or rearranged to create new

versions of the sentence. If we begin with "The cat quickly jumped over the lazy

dog,"? we might swap the positions of some words to get the following: "Quickly

the cat jumped the over lazy dog."?

While these sentences may sound grammatically incorrect or strange in English,

they provide valuable training information for data augmentation because the

model can still recognize the important words and their associations with each

other. However, this method has its limitations. For example, shuffling words too

much or in certain ways can drastically change the meaning of a sentence or

make it completely nonsensical. Moreover, word shuffling may interfere with the

model's learning process, as the positional relationships between certain words

can be vital in these contexts.

Tips: 词序打乱，有助于模型关注词语本身及其关系，⽽⾮固定语序。但过

度打乱可能导致语义丢失或句⼦⽆意义。某些任务中，词语的顺序很重要，

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 115 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

随意打乱会影响模型学习效果。

Sentence Shuffling
In sentence shuffling, entire sentences within a paragraph or a document are

rearranged to create new versions of the input text. By shuffling sentences within

a document, we expose the model to different arrangements of the same content,

helping it learn to recognize thematic elements and key concepts rather than

relying on specific sentence order. This promotes a more robust understanding of

the document's overall topic or category. Consequently, this technique is

particularly useful for tasks that deal with document-level analysis or paragraph-

level understanding, such as document classification, topic modeling, or text

summarization.

In contrast to the aforementioned word-based methods (word position swapping,

word deletion, and synonym replacement), sentence shuffling maintains the

internal structure of individual sentences. This avoids the problem of altering

word choice or order such that sentences become grammatically incorrect or

change meaning entirely.

Sentence shuffling is useful when the order of sentences is not crucial to the

overall meaning of the text. Still, it may not work well if the sentences are logically

or chronologically connected. For example, consider the following paragraph: "I

went to the supermarket. Then I bought ingredients to make pizza. Afterward, I

made some delicious pizza."? Reshuffling these sentences as follows disrupts the

logical and temporal progression of the narrative: "Afterward, I made some

delicious pizza. Then I bought ingredients to make pizza. I went to the

supermarket."?

Noise Injection
Noise injection is an umbrella term for techniques used to alter text in various

ways and create variation in the texts. It may refer either to the methods

described in the previous sections or to character-level techniques such as

inserting random letters, characters, or typos, as shown in the following examples:

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 116 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Random character insertion "The cat qzuickly jumped over the lazy dog."?

(Inserted a z in the word quickly.)

Random character deletion "The cat quickl jumped over the lazy dog."? (Deleted y

from the word quickly.)

Typo introduction "The cat qickuly jumped over the lazy dog."? (Introduced a typo

in quickly, changing it to qickuly.)

These modifications are beneficial for tasks that involve spell-checking and text

correction, but they can also help make the model more robust to imperfect

inputs.

Tips: 随机字符插⼊、删除、错别字，有助于模型学习拼写和语法错误，但

过度使⽤可能导致模型过拟合。

Back Translation
Back translation is one of the most widely used techniques to create variation in

texts. Here, a sentence is first translated from the original language into one or

more different languages, and then it is translated back into the original language.

Translating back and forth often results in sentences that are semantically similar

to the original sentence but have slight variations in structure, vocabulary, or

grammar. This generates additional, diverse examples for training without altering

the overall meaning.

For example, say we translate "The cat quickly jumped over the lazy dog"? into

German. We might get "Die Katze sprang schnell Ã¼ber den faulen Hund."? We

could then translate this German sentence back into English to get "The cat

jumped quickly over the lazy dog."?

The degree to which a sentence changes through backtranslation depends on the

languages used and the specifics of the machine translation model. In this

example, the sentence remains verys imilar. However, in other cases or with other

languages, you might see more significant changes in wording or sentence

structure while maintaining the same overall meaning.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 117 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

This method requires access to reliable machine translation models or services,

and care must be taken to ensure that the back-translated sentences retain the

essential meaning of the original sentences.

Tips: 回译，通过将句⼦翻译成另⼀种语⾔，再翻译回来，可以⽣成新的数

据。但回译的结果有时并不准确，需要筛除不合适的回译结果。

Synthetic Data
Synthetic data generation is an umbrella term that describes methods and

techniques used to create artificial data that mimics or replicates the structure of

real-world data. All methods discussed in this chapter can be considered synthetic

data generation techniques since they generate new data by making small

changes to existing data, thus maintaining the overall meaning while creating

something new.

Modern techniques to generate synthetic data now also include using decoder-

style LLMs such as GPT (decoder-style LLMs are discussed in more detail in

Chapter [ch17]). We can use these models to generate new data from scratch by

using "complete the sentence"? or "generate example sentences"? prompts,

among others. We can also use LLMs as alternatives to back translation,

prompting them to rewrite sentences as shown in Figure 1.1.

Note that an LLM, as shown in Figure 1.1, runs in a nondeterministic mode by

default, which means we can prompt it multiple times to obtain a variety of

rewritten sentences.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 118 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Recommendations
The data augmentation techniques discussed in this chapter are commonly used

in text classification, sentiment analysis, and other NLP tasks where the amount

of available labeled data might be limited.

LLMs are usually pretrained on such a vast and diverse dataset that they may not

rely on these augmentation techniques as extensively as in other, more specific

NLP tasks. This is because LLMs aim to capture the statistical properties of the

language, and the vast amount of data on which they are trained often provides a

sufficient variety of contexts and expressions. However, in the fine-tuning stages of

LLMs, where a pretrained model is adapted to a specific task with a smaller, task-

specific dataset, data augmentation techniques might become more relevant

again, mainly if the task-specific labeled dataset size is limited.

Tips: 数据增强 在LLM的 预训练 阶段可能 不太有⽤ ，因为LLM已经在⼤规模

数据上预训练过了。但在 微调阶段 ，数据增强可能 更有⽤ ，特别是当任务

特定的标注数据集较⼩时。

Exercises
15-1. Can the use of text data augmentation help with privacy concerns?

15-2. What are some instances where data augmentation may not be beneficial for

a specific task?

References
The WordNet thesaurus: George A. Miller, "WordNet: A Lexical Database for

English"? (1995), https://dl.acm.org/doi/10.1145/219717.219748.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 119 页，共 239 页

https://dl.acm.org/doi/10.1145/219717.219748
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 16: Self-Attention
Where does self-attention get its name, and how is it different from

previously developed attention mechanisms?

Self-attention enables a neural network to refer to other portions of the input

while focusing on a particular segment, essentially allowing each part the ability

to "attend"? to the whole input. The original attention mechanism developed for

recurrent neural networks (RNNs) is applied between two different

sequences: the encoder and the decoder embeddings. Since the attention

mechanisms used in transformer-based large language models is designed to

work on all elements of the same set, it is known as self-attention.

Tips: self-attention 允许神经⽹络在关注特定部分时，同时参考其他部

分。每个部分都能“关注”整个输⼊。

This chapter first discusses an earlier attention mechanism developed for RNNs,

the Bahdanau mechanism, in order to illustrate the motivation behind

developing attention mechanism. We then compare the Bahdanau mechanism to

the self-attention mechanism prevalent in transformer architectures today.

Attention in RNNs
One example of an attention mechanism used in RNNs to handle long sequences

is Bahdanau attention. Bahdanau attention was developed to make machine

learning models, particularly those used in translating languages, better at

understanding long sentences. Before this type of attention, the whole input (such

as a sentence in English) was squashed into a single chunk of information, and

important details could get lost, especially if the sentence was long.

To understand the difference between regular attention and self- attention, let's

begin with the illustration of the Bahdanau attention mechanism in Figure 16.1.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 120 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 16.1

In Figure 16.1, the values represent the attention weights for the second

sequence element and each other element in the sequence from 1 to T.

Furthermore, this original attention mechanism involves two RNNs .

The RNN at the bottom, computing the attention weights, represents the

encoder,

while the RNN at the top, producing the output sequence, is a decoder.

Tips:

原始注意⼒机制是应⽤于两个不同序列的： 编码器 和 解码器 嵌⼊。

对于每个⽣成的输出序列元素， 解码器RNN 基于隐藏状态和编码器⽣成

的 上下⽂向量 。

上下⽂向量 涉及输⼊序列的所有元素，是所有输⼊元素的加权和，其

中，注意⼒分数（ ）表示权重系数。

这允许 解码器 访问输⼊序列的所有元素（上下⽂）。

α

α

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 121 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In short, the original attention mechanism developed for RNNs is applied between

two different sequences: the encoder and decoder embeddings. For each

generated output sequence element, the decoder RNN at the top is based on a

hidden state plus a context vector generated by the encoder. This context vector

involves all elements of the input sequence and is a weighted sum of all input

elements where the attention scores ('s) represent the weighting coefficients.

This allows the decoder to access all input sequence elements (the context) at

each step. The key idea is that the attention weights (and context) may differ and

change dynamically at each step.

The motivation behind this complicated encoder-decoder design is that we cannot

translate sentences word by word. This would result in grammatically incorrect

outputs, as illustrated by the RNN architecture (a) in Figure 16.2.

Figure 16.2

Figure 16.2 shows two different sequence-to-sequence RNN designs for sentence

translation.

Figure 16.2(a) represents a regular sequence-to-sequence RNN that may be used

to translate a sentence from German to English word by word.

Figure 16.2(b) depicts an encoder-decoder RNN that first reads the whole

sentence before translating it.

RNN architecture (a) is best suited for time series tasks in which we want to

make one prediction at a time, such as predicting a given stock price day by day.

For tasks like language translation, we typically opt for an encoder-decoder RNN,

as in architecture (b) in Figure 16.2. Here, the RNN encodes the input

sentence, stores it in an intermediate hidden representation, and generates the

output sentence. However, this creates a bottleneck where the RNN has to

α

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 122 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

memorize the whole input sentence via a single hidden state, which does not

work well for longer sequences.

The bottleneck depicted in architecture (b) prompted the Bahdanau

attention mechanism's original design, allowing the decoder to access all

elements in the input sentence at each time step. The attention scores also give

different weights to the different input elements depending on the current word

that the decoder generates. For example, when generating the word help in the

output sequence, the word helfen in the German input sentence may get a large

attention weight, as it's highly relevant in this context.

The Self-Attention Mechanism
The Bahdanau attention mechanism relies on a somewhat complicated encoder-

decoder design to model long-term dependencies in sequence- to-sequence

language modeling tasks. Approximately three years after the Bahdanau

mechanism, researchers worked on simplifying sequence-to- sequence modeling

architectures by asking whether the RNN backbone was even needed to achieve

good language translation performance. This led to the design of the original

transformer architecture and self-attention mechanism.

Tips: transformer 架构，在 2017 年提出，⽤于解决序列到序列（sequence-

to-sequence）语⾔建模任务中的⻓程依赖问题。

在 transformer 架构中，注意⼒机制被应⽤于同⼀序列中的所有元素，⽽不

是像 Bahdanau 注意⼒机制那样涉及两个不同的序列。

与 RNN 中的注意⼒机制类似，上下⽂向量是输⼊序列元素的加权和，其中

注意⼒分数（ ）表示权重系数。

这允许解码器访问输⼊序列的所有元素（上下⽂）。

In self-attention, the attention mechanism is applied between all elements in the

same sequence (as opposed to involving two sequences), as depicted in the

simplified attention mechanism in Figure 16.3. Similar to the attention

mechanism for RNNs, the context vector is an attention-weighted sum over the

input sequence elements.

α

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 123 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 16.3

While Figure 16.3 doesn't include weight matrices, the self-attention mechanism

used in transformers typically involves multiple weight matrices to compute the

attention weights.

This chapter laid the groundwork for understanding the inner workings of

transformer models and the attention mechanism. The next chapter covers the

different types of transformer architectures in more detail.

Exercises
16-1. Considering that self-attention compares each sequence element with itself,

what is the time and memory complexity of self-attention?

16-2. We discussed self-attention in the context of natural language processing.

Could this mechanism be useful for computer vision applications as well?

References
The paper introducing the original self-attention mechanism, also known as

scaled dot-product attention: Ashish Vaswani et al., "Attention Is All You

Need"? (2017), https://arxiv.org/abs/1706.03762.

The Bahdanau attention mechanism for RNNs: Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio, "Neural Machine Translation by Jointly Learning to

Align and Translate"? (2014), https://arxiv.org/abs/1409.0473.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 124 页，共 239 页

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1409.0473
https://github.com/ningg/Machine-Learning-Q-and-AI

For more about the parameterized self-attention mechanism, check out my

blog post: "Understanding and Coding the Self-Attention Mechanism of Large

Language Models from Scratch"? at

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 125 页，共 239 页

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 17: Encoder- and Decoder-
Style Transformers
What are the differences between encoder- and decoder-based language

transformers?

Both encoder- and decoder-style architectures use the same self-attention layers

to encode word tokens. The main difference is that encoders are designed to learn

embeddings that can be used for various predictive modeling tasks such as

classification. In contrast, decoders are designed to generate new texts, for

example, to answer user queries.

Tips: 编码器（encoder）和解码器（decoder）架构都采⽤⾃注意⼒（self-

attention）层来对词元进⾏编码。

主要区别在于：

编码器，侧重于学习⽂本的上下⽂表示（embedding），以便⽤于分类等

各种预测任务；

⽽解码器，则专注于⽣成新的⽂本内容，⽐如⽤于回答⽤户问题等⽣成

式任务。

This chapter starts by describing the original transformer architecture consisting

of an encoder that processes input text and a decoder that produces translations.

The subsequent sections then describe how models like BERT and RoBERTa utilize

only the encoder to understand context and how the GPT architectures emphasize

decoder-only mechanisms for text generation.

The Original Transformer
The original transformer architecture introduced in Chapter [ch16] was developed

for English-to-French and English-to-German language translation. It utilized both

an encoder and a decoder, as illustrated in Figure 17.1.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 126 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 17.1

In Figure 17.1, the input text (that is, the sentences of the text to betranslated) is

first tokenized into individual word tokens, which are then encoded via an

embedding layer before they enter the encoder part (see Chapter [ch01] for

more on embeddings). After a positional encoding vector is added to each

embedded word,the embeddings go through a multi-head self-attention

layer . This layer is followed by an addition step , indicated by a plus sign (+)

in Figure 17.1, which performs a layer normalization and adds the original

embeddings via a skip connection , also known as a residual or shortcut

connection. Following this is a LayerNormblock, short for layernormalization,

which normalizes the activations of the previous layer to improve the stability of

the neural network's training. The addition of the original embeddings and the

layer normalization steps are often summarized as the Add & Normstep .

Finally, after entering the fully connected network -- a small, multilayer

perceptron consisting of two fully connected layers with a nonlinear activation

function in between -- the outputs are again added and normalized before they

are passed to a multi-head self-attention layer of the decoder.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 127 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips:

tokenized ：将⽂本拆分成单词或词元（token）。

embedding layer ：将词元转换为向量表示。

positional encoding vector ：将词元的位置信息添加到向量表示

中。

multi-head self-attention layer ：对词元进⾏⾃注意⼒计算。

addition step ：将原始向量表示和⾃注意⼒计算结果相加，也称为

残差连接 、跳跃连接 、快捷连接 。

layer normalization ：对每个层的激活进⾏归⼀化，以提⾼神经⽹

络的稳定性。

Add & Normstep ：将原始向量表示和⾃注意⼒计算结果相加，并进⾏

归⼀化。

fully connected network ：⼀个⼩的多层感知器，包含两个全连接

层和⼀个⾮线性激活函数。

The decoder in Figure 17.1 has a similar overall structure to the encoder. The key

difference is that the inputs and outputs are different: the encoder receives the

input text to be translated, while the decoder generates the translated text.

Encoders

The encoder part in the original transformer, as illustrated in Figure 17.1, is

responsible for understanding and extracting the relevant information from the

input text. It then outputs a continuous representation (embedding) of the input

text, which is passed to the decoder. Finally, the decoder generates the translated

text (target language) based on the continuous representation received from the

encoder.

Over the years, various encoder-only architectures have been developed based

on the encoder module of the original transformer model outlined earlier. One

notable example is BERT , which stands for Bidirectional Encoder

Representations from Transformers.

As noted in Chapter [ch14], BERT is an encoder-only architecture based on the

transformer's encoder module. The BERT model is pretrained on a large text

corpus using masked language modeling and next-sentence prediction tasks.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 128 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 17.2 illustrates the masked language modeling pretraining objective used

in BERT-style transformers.

Tips: BERT 是基于掩码语⾔建模和预测下⼀句任务 预训练的模型。

Figure 17.2

As Figure 17.2 demonstrates, the main idea behind masked language modeling is

to mask (or replace) random word tokens in the input sequence and then train the

model to predict the original masked tokens based on the surrounding context.

In addition to the masked language modeling pretraining task illustrated in

Figure 17.2, the next-sentence prediction task asks the model to predict whether

the original document's sentence order of two randomly shuffled sentences is

correct. For example, say that two sentences, in random order, are separated by

the [SEP] token (SEP is short for separate). The brackets are a part of the token's

notation and are used to make it clear that this is a special token as opposed to a

regular word in the text. BERT-style transformers also use a [CLS] token. The [CLS]

token serves as a placeholder token for the model, prompting the model to return

a True or False label indicating whether the sentences are in the correct order:

"[CLS] Toast is a simple yet delicious food. [SEP] It's often served with butter,

jam, or honey."?

"[CLS] It's often served with butter, jam, or honey. [SEP] Toast is a simple yet

delicious food."?

The masked language and next-sentence pretraining objectives allow BERT to

learn rich contextual representations of the input texts, which can then be fine-

tuned for various downstream tasks like sentiment analysis, question answering,

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 129 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

and named entity recognition. It's worth noting that this pretraining is a form of

self-supervised learning (see Chapter [ch02] for more details on this type of

learning).

Tips: 值得⼀提的是，这种预训练⽅式是⼀种⾃监督学习（self-supervised

learning）

RoBERTa , which stands for Robustly Optimized BERT Approach, is an improved

version of BERT. It maintains the same overall architecture as BERT but employs

several training and optimization improvements, such as larger batch sizes, more

training data, and eliminating the next-sentence prediction task. These changes

have resulted in RoBERTa achieving better performance on various natural

language understanding tasks than BERT.

Decoders

Coming back to the original transformer architecture outlined in Figure 17.1, the

multi-head self-attention mechanism in the decoder is similar to the one in the

encoder, but it is masked to prevent the model from attending to future positions,

ensuring that the predictions for position i can depend only on the known outputs

at positions less than i. As illustrated in Figure 17.3, the decoder generates the

output word by word.

Tips: 解码器中，为了 防⽌ 模型 关注未来的位置 上信息，会进⾏ 掩码 处

理。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 130 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 17.3

This masking (shown explicitly in Figure 17.3, although it occurs internally in the

decoder's multi-head self-attention mechanism) is essential to maintaining the

transformer model's autoregressive property during training and inference. This

autoregressive property ensures that the model generates output tokens one at a

time and uses previously generated tokens as context for generating the next

word token.

Tips: 解码器中，为了 保持 模型 ⾃回归 的特性，会进⾏ 掩码 处理。

⾃回归（Autoregressive）：在⽣成式任务中，模型会根据之前⽣成的内容，

预测下⼀个词。

FIXME: ⾃回归 auto-regressive 是什么意思？？？

Over the years, researchers have built upon the original encoder-decoder

transformer architecture and developed several decoder-only models that have

proven highly effective in various natural language processing tasks. The most

notable models include the GPT family, which we briefly discussed in

Chapter [ch14] and in various other chapters throughout the book. GPT stands

for Generative Pre-trained Transformer. The GPT series comprises decoder-only

models pretrained on large-scale unsupervised text data and fine-tuned for

specific tasks such as text classification, sentiment analysis, question answering,

and summarization. The GPT models, including at the time of writing GPT-2, GPT-

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 131 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

3, and GPT-4, have shown remarkable performance in various benchmarks and

are currently the most popular architecture for natural language processing.

One of the most notable aspects of GPT models is their emergent properties.

Emergent properties are the abilities and skills that a model develops due to its

next-word prediction pretraining. Even though these models were taught only to

predict the next word, the pretrained models are capable of text summarization,

translation, question answering, classification, and more. Furthermore, these

models can perform new tasks without updating the model parameters via in-

context learning, which we'll discuss in more detail in Chapter [ch18].

Encoder-Decoder Hybrids
Next to the traditional encoder and decoder architectures, there have been

advancements in the development of new encoder-decoder models that leverage

the strengths of both components. These models often incorporate novel

techniques, pretraining objectives, or architectural modifications to enhance their

performance in various natural language processing tasks. Some notable

examples of these new encoder-decoder models include BART and T5 .

Encoder-decoder models are typically used for natural language processing tasks

that involve understanding input sequences and generating output sequences,

often with different lengths and structures. They are particularly good at tasks

where there is a complex mapping between the input and output sequences and

where it is crucial to capture the relationships between the elements in both

sequences. Some common use cases for encoder-decoder models include text

translation and summarization.

Tips：Encoder-decoder models，通常⽤于⾃然语⾔处理任务，涉及理解输

⼊序列和⽣成输出序列，通常具有不同的⻓度和结构。在⽂本翻译和摘要等

任务中，表现尤为出⾊。

Terminology
All of these methods -- encoder-only , decoder-only , and encoder-

decoder models -- are sequence-to-sequence models (often abbreviated as

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 132 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

seq2seq). While we refer to BERT-style methods as "encoder-only,"? the

description may be misleading since these methods also decode the embeddings

into output tokens or text during pretraining. In other words, both encoder-only

and decoder-only architectures perform decoding.

However, the encoder-only architectures, in contrast to decoder-only and encoder-

decoder architectures, don't decode in an autoregressive fashion. Autoregressive

decoding refers to generating output sequences one token at a time, conditioning

each token on the previously generated tokens. Encoder-only models do not

generate coherent output sequences in this manner. Instead, they focus on

understanding the input text and producing task-specific outputs, such as labels

or token predictions.

Contemporary Transformer Models
In brief, encoder-style models are popular for learning embeddings used in

classification tasks, encoder-decoder models are used in generative tasks where

the output heavily relies on the input (for example, translation and

summarization), and decoder-only models are used for other types of generative

tasks, including Q&A. Since the first transformer architecture emerged, hundreds

of encoder-only, decoder-only, and encoder-decoder hybrids have been

developed, as diagrammed in Figure 17.4.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 133 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 17.4

While encoder-only models have gradually become less popular, decoder-only

models like GPT have exploded in popularity, thanks to breakthroughs in text

generation via GPT-3, ChatGPT, and GPT-4. However, encoder-only models are still

very useful for training predictive models based on text embeddings as opposed

to generating texts.

Exercises
17-1. As discussed in this chapter, BERT-style encoder models are pretrained using

masked language modeling and next-sentence prediction pretraining objectives.

How could we adopt such a pretrained model for a classification task (for

example, predicting whether a text has a positive or negative sentiment)?

17-2. Can we fine-tune a decoder-only model like GPT for classification?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 134 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

References
The Bahdanau attention mechanism for RNNs: Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio, "Neural Machine Translation by Jointly Learning to

Align and Translate"? (2014), https://arxiv.org/abs/1409.0473.

The original BERT paper, which popularized encoder-style transformers with a

masked word and a next-sentence prediction pretraining objective: Jacob

Devlin et al., "BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding"? (2018), https://arxiv.org/abs/1810.04805.

RoBERTaimprovesuponBERTbyoptimizingtrainingprocedures,usinglargertrainingdatasets,and

sentencepred-

 ictiontask:YinhanLiuetal.,"RoBERTa:ARobustlyOptimizedBERTPretrainingApproach"?

(2019),https://arxiv.org/abs/1907.11692.

The BART encoder-decoder architecture: Mike Lewis et al., "BART: Denoising

Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension"? (2018), https://arxiv.org/abs/1910.13461.

The T5 encoder-decoder architecture: Colin Raffel et al., "Exploring the Limits

of Transfer Learning with a Unified Text-to-Text Transformer"? (2019),

https://arxiv.org/abs/1910.10683.

The paper proposing the first GPT architecture: Alec Radford et al., "Improving

Language Understanding by Generative Pre-Training"? (2018),

https://cdn.openai.com/research-covers/language-

unsupervised/language_understanding_paper.pdf.

The GPT-2 model: Alec Radford et al., "Language Models Are Unsupervised

Multitask Learners"? (2019),

https://www.semanticscholar.org/paper/Language-Models-are-

Unsupervised-Multitask-Learners-Radford-

Wu/9405cc0d6169988371b2755e573cc28650d14dfe.

The GPT-3 model: Tom B. Brown et al., "Language Models Are Few-Shot

Learners"? (2020), https://arxiv.org/abs/2005.14165.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 135 页，共 239 页

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.10683
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://arxiv.org/abs/2005.14165
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 18: Using and Fine-Tuning
Pretrained Transformers
What are the different ways to use and fine-tune pretrained large language

models?

使⽤和微调预训练⼤语⾔模型的三种⽅法：

1. 特征提取

2. 上下⽂学习（提示学习）

3. 微调部分模型参数

The three most common ways to use and fine-tune pretrained LLMs include a

feature-based approach , in-context prompting , and updating a

subset of the model parameters . First, most pretrained LLMs or language

transformers can be utilized without the need for further fine-tuning. For instance,

we can employ a feature-based method to train a new downstream model, such

as a linear classifier, using embeddings generated by a pretrained transformer.

Second, we can showcase examples of a new task within the input itself, which

means we can directly exhibit the expected outcomes without requiring any

updates or learning from the model. This concept is also known as prompting.

Finally, it's also possible to fine-tune all or just a small number of parameters to

achieve the desired outcomes.

The following sections discuss these types of approaches in greater depth.

Using Transformers for Classification Tasks
Let's start with the conventional methods for utilizing pretrained transformers:

training another model on feature embeddings, fine-tuning output layers, and

fine-tuning all layers. We'll discuss these in the context of classification. (We will

revisit prompting later in the section "In-Context Learning, Indexing, and Prompt

Tuning" on page .)

In the feature-based approach, we load the pretrained model and keep it "frozen,"

meaning we do not update any parameters of the pretrained model. Instead, we

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 136 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

treat the model as a feature extractor that we apply to our new dataset. We then

train a downstream model on these embeddings.

特征提取⽅法：

1. 加载预训练模型并保持冻结状态，不更新任何参数。

2. 将预训练模型视为特征提取器，应⽤于新数据集。

3. 在提取的特征上训练下游模型。

This downstream model can be any model like (random forests, XGBoost, and so

on), but linear classifiers typically perform best. This is likely because pretrained

transformers like BERT and GPT already extract high-quality, informative features

from the input data. These feature embeddings often capture complex

relationships and patterns, making it easy for a linear classifier to effectively

separate the data into different classes. Furthermore, linear classifiers, such as

logistic regression machines and support vector machines, tend to have strong

regularization properties. These regularization properties help prevent overfitting

when working with high-dimensional feature spaces generated by pretrained

transformers. This feature-based approach is the most efficient method since it

doesn't require updating the transformer model at all. Finally, the embeddings

can be precomputed for a given training dataset (since they don't change) when

training a classifier for multiple training epochs.

特征提取⽅法的优点：

1. 不需要更新预训练模型。

2. 提取的特征通常能够捕捉复杂的关系和模式，使得线性分类器能够有效

地分离数据。

3. 线性分类器通常具有较强的正则化属性，有助于防⽌在⾼维特征空间中

过拟合。

4. 特征可以预先计算，⽤于多个训练轮次的分类器训练。

Figure 18.1 illustrates how LLMs are typically created and adopted for

downstream tasks using fine-tuning. Here, a pretrained model, trained on a

general text corpus, is fine-tuned to perform tasks like German-to-English

translation.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 137 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 18.1

The conventional methods for fine-tuning pretrained LLMs include updating only

the output layers, a method we'll refer to as fine-tuning I, and updating all layers,

which we'll call fine-tuning II.

微调⽅法，分为 2 类：

1. 只更新输出层，称为 fine-tuning I。

2. 更新所有层，称为 fine-tuning II。

Fine-tuning I is similar to the feature-based approach described earlier, but it

adds one or more output layers to the LLM itself. The backbone of the LLM

remains frozen, and we update only the model parameters in these new layers.

Since we don't need to backpropagate through the whole network, this approach

is relatively efficient regarding throughput and memory requirements.

In fine-tuning II , we load the model and add one or more output layers,

similarly to fine-tuning I. However, instead of backpropagating only through the

last layers, we update all layers via backpropagation, making this the most

expensive approach. While this method is computationally more expensive than

the feature-based approach and fine-tuning I, it typically leads to better modeling

or predictive performance. This is especially true for more specialized domain-

specific datasets.

Figure 18.2 summarizes the three approaches described in this section so far.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 138 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 18.2

In addition to the conceptual summary of the three fine-tuning methods

described in this section, Figure 18.2 also provides a rule-of-thumb guideline for

these methods regarding training efficiency. Since fine-tuning II involves updating

more layers and parameters than fine-tuning I, backpropagation is costlier for

fine-tuning II. For similar reasons, fine-tuning II is costlier than a simpler feature-

based approach.

In-Context Learning, Indexing, and Prompt
Tuning
LLMs like GPT-2 and GPT-3 popularized the concept of in-context learning ,

often called zero-shot or few-shot learning in this context, which is illustrated in

Figure 18.3.

Figure 18.3

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 139 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

As Figure 18.3 shows, in-context learning aims to provide context or examples of

the task within the input or prompt, allowing the model to infer the desired

behavior and generate appropriate responses. This approach takes advantage of

the model's ability to learn from vast amounts of data during pretraining, which

includes diverse tasks and contexts.

The definition of few-shot learning, considered synonymous with in-context

learning-based methods, differs from the conventional approach to few-shot

learning discussed in Chapter [ch03].

此处讨论的 few-shot learning 与第 3 章讨论的 few-shot learning 不同。

For example, suppose we want to use in-context learning for few-shot German --

English translation using a large-scale pretrained language model like GPT-3. To

do so, we provide a few examples of German -- English translations to help the

model understand the desired task, as follows:

Generally, in-context learning does not perform as well as fine-tuning for certain

tasks or specific datasets since it relies on the pretrained model's ability to

generalize from its training data without further adapting its parameters for the

particular task at hand.

上下⽂学习在某些任务或特定数据集上可能不如微调，因为它依赖于预训练

模型从其训练数据中泛化，⽽⽆需为特定任务进⼀步调整其参数。

Translate the following German sentences into English:

Example 1:

German: "Ich liebe Pfannkuchen."

English: "I love pancakes."

Example 2:

German: "Das Wetter ist heute schoen."

English: "The weather is nice today."

Translate this sentence:

German: "Wo ist die naechste Bushaltestelle?"

text

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 140 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

However, in-context learning has its advantages. It can be particularly useful when

labeled data for fine-tuning is limited or unavailable. It also enables rapid

experimentation with different tasks without fine-tuning the model parameters in

cases where we don't have direct access to the model or where we interact only

with the model through a UI or API (for example, ChatGPT).

上下⽂学习的优点：

1. 在有标签数据有限或不可⽤的情况下，上下⽂学习特别有⽤。

2. 在不需要直接访问模型或仅通过 UI 或 API 与模型交互的情况下，可以快

速尝试不同的任务。

Related to in-context learning is the concept of hard prompt tuning, where hard

refers to the non-differentiable nature of the input tokens. Where the previously

described fine-tuning methods update the model parameters to better perform

the task at hand, hard prompt tuning aims to optimize the prompt itself to

achieve better performance. Prompt tuning does not modify the model

parameters, but it may involve using a smaller labeled dataset to identify the best

prompt formulation for the specific task.

提示词⼯程，即提示词微调。不改变模型参数，⽽是优化提示词（可能包含

⼀⼩部分标签示例数据），以达到更好的性能。

For example, to improve the prompts for the previous German -- English

translation task, we might try the following three prompting variations:

Translate the German sentence '{german_sentence}' into English:

{english_translation}

German: '{german_sentence}' English: {english_translation}

From German to English: '{german_sentence}' -> {english_translation}

提示词⼯程的优点：

1. 资源效率⾼，不需要更新模型参数。

2. 性能通常不如全模型微调，因为它不更新模型参数，可能限制其适应特

定任务的细微差别。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 141 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Prompt tuning is a resource-efficient alternative to parameter fine-tuning.

However, its performance is usually not as good as full model fine-tuning, as it

does not update the model's parameters for a specific task, potentially limiting its

ability to adapt to task-specific nuances. Furthermore, prompt tuning can be labor

intensive since it requires either human involvement comparing the quality of the

different prompts or another similar method to do so. This is often known as hard

prompting since, again, the input tokens are not differentiable. In addition, other

methods exist that propose to use another LLM for automatic prompt generation

and evaluation.

Yet another way to leverage a purely in-context learning-based approach is

indexing , illustrated in Figure 18.4

Figure 18.4

In the context of LLMs, we can think of indexing as a workaround based on in-

context learning that allows us to turn LLMs into information retrieval systems to

extract information from external resources and websites. In Figure 18.4, an

indexing module parses a document or website into smaller chunks, embedded

into vectors that can be stored in a vector database. When a user submits a query,

the indexing module computes the vector similarity between the embedded query

and each vector stored in the database. Finally, the indexing module retrieves the

top k most similar embeddings to synthesize the response.

索引，即索引模块，将⽂档或⽹站解析为更⼩的块 chunk，嵌⼊到向量中，

可以存储在向量数据库中。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 142 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

当⽤户提交查询时，索引模块计算嵌⼊查询与数据库中每个向量的相似

度。

最后，索引模块检索与查询最相似的 k 个嵌⼊向量，以合成响应。

Parameter-Efficient Fine-Tuning
In recent years, many methods have been developed to adapt pretrained

transformers more efficiently for new target tasks. These methods are commonly

referred to as parameter-efficient fine-tuning , with the most popular

methods at the time of writing summarized in Figure 18.5.

Figure 18.5

In contrast to the hard prompting approach discussed in the previous section,

soft prompting strategies optimize embedded versions of the prompts. While

in hard prompt tuning we modify the discrete input tokens, in soft prompt

tuning we utilize trainable parameter tensors instead. The idea behind soft

prompt tuning is to prepend a trainable parameter tensor (the "soft prompt") to

the embedded query tokens. The prepended tensor is then tuned to improve the

modeling performance on a target dataset using gradient descent.

硬提示词，调整了输⼊的离散 tokens；软提示词，调整了输⼊的 tokens 的

嵌⼊。

软提示词的思路是，在输⼊的 tokens 前添加⼀个可训练的参数 tensor

（即软提示词），

然后使⽤梯度下降优化这个 tensor，以提⾼在⽬标数据集上的建模性

能。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 143 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In Python-like pseudocode, soft prompt tuning can be described as

where the soft_prompt_tensor has the same feature dimension as the

embedded inputs produced by the embedding layer. Consequently, the modified

input matrix has additional rows (as if it extended the original input sequence

with additional tokens, making it longer).

Another popular prompt tuning method is prefix tuning . Prefix tuning is

similar to soft prompt tuning, except that in prefix tuning, we prepend trainable

tensors (soft prompts) to each transformer block instead of only the embedded

inputs, which can stabilize the training.

前缀调优，在每个 transformer block 前添加⼀个可训练的参数 tensor。

The implementation of prefix tuning is illustrated in the following pseudocode:

Let's break Listing 18.6 into three main parts: implementing the soft prompt,

concatenating the soft prompt (prefix) with the input, and implementing the rest

x EmbeddingLayer input_ids

x concatenate soft_prompt_tensor x dim seq_len

output model x

= ()

= ([,], =)

= ()

python

 x

 soft_prompt FullyConnectedLayers

 soft_prompt

 x concatenate soft_prompt x

 dim seq_len

 residual x

 x SelfAttention x

 x LayerNorm x residual

 residual x

 x FullyConnectedLayers x

 x LayerNorm x residual

 x

def transformer_block_with_prefix():

= (# Prefix

) # Prefix

= ([,], # Prefix

=) # Prefix

=

= ()

= (+)

=

= ()

= (+)

return

python

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 144 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

of the transformer block.

First, the soft_prompt , a tensor, is processed through a set of fully connected

layers. Second, the transformed soft prompt is concatenated with the main input,

x . The dimension along which they are concatenated is denoted by seq_len ,

referring to the sequence length dimension. Third, the subsequent lines of code

describe the standard operations in a transformer block, including self-attention,

layer normalization, and feed-forward neural network layers, wrapped around

residual connections.

As shown in Listing 18.6, prefix tuning modifies a transformer block by

adding a trainable soft prompt . Figure 18.6 further illustrates the difference

between a regular transformer block and a prefix tuning transformer block.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 145 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 18.6

Both soft prompt tuning and prefix tuning are considered parameter

efficient since they require training only the prepended parameter tensors and not

the LLM parameters themselves.

Adapter methods are related to prefix tuning in that they add additional

parameters to the transformer layers. In the original adapter method, additional

fully connected layers were added after the multihead self-attention and existing

fully connected layers in each transformer block, as illustrated in Figure 18.7.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 146 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 18.7

Only the new adapter layers are updated when training the LLM using the original

adapter method, while the remaining transformer layers remain frozen. Since the

adapter layers are usually small -- the first fully connected layer in an adapter

block projects its input into a low-dimensional representation, while the second

layer projects it back into the original input dimension -- this adapter method is

usually considered parameter efficient.

只会更新 adapter 层，其他层保持冻结。

In pseudocode, the original adapter method can be written as follows:

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 147 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Low-rank adaptation(LoRA) , another popular parameter-efficient fine-tuning

method worth considering, refers to reparameterizing pretrained LLM weights

using low-rank transformations. LoRA is related to the concept of low-rank

transformation , a technique to approximate a high-dimensional matrix or

dataset using a lower-dimensional representation. The lower-dimensional

representation (or low-rank approximation) is achieved by finding a

combination of fewer dimensions that can effectively capture most of the

information in the original data. Popular low-rank transformation techniques

include principal component analysis and singular vector decomposition.

低秩适应（LoRA），另⼀种流⾏的参数⾼效微调⽅法，值得考虑，指的是使

⽤低秩变换重新参数化预训练 LLM 权重。

LoRA 与低秩变换的概念相关，低秩变换是⼀种技术，使⽤较低维度的表

示来近似⾼维矩阵或数据集。

低秩变换（或低秩近似）通过找到更少的维度组合来有效捕获原始数据

中的⼤部分信息。

流⾏的低秩变换技术包括主成份分析和奇异值分解。

For example, suppose represents the parameter update for a weight matrix

of the LLM with dimension . We can decompose the weight update matrix

into two smaller matrices: , where and

. Here, we keep the original weight frozen and train only the new matrices

 and .

 x

 residual x

 x SelfAttention x

 x FullyConnectedLayers x

 x LayerNorm x residual

 residual x

 x FullyConnectedLayers x

 x FullyConnectedLayers x

 x LayerNorm x residual

 x

def transformer_block_with_adapter():

=

= ()

= () # Adapter

= (+)

=

= ()

= () # Adapter

= (+)

return

python

ΔW

RA×B

ΔW = W W A B W ∈A RA×h W ∈A

Rh×B

W A W B

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 148 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

How is this method parameter efficient if we introduce new weight matrices?

These new matrices can be very small. For example, if A = 25 and B = 50, then the

size of is 25 50 = 1,250. If h = 5, then has 125 parameters, has

250 parameters, and the two matrices combined have only 125 + 250 = 375

parameters in total.

After learning the weight update matrix, we can then write the matrix

multiplication of a fully connected layer, as shown in this pseudocode:

In Listing [matrixMultiplication], scalar is a scaling factor that adjusts the

magnitude of the combined result (original model output plus low-rank

adaptation). This balances the pretrained model's knowledge and the new task-

specific adaptation.

According to the original paper introducing the LoRA method, models using LoRA

perform slightly better than models using the adapter method across several task-

specific benchmarks. Often, LoRA performs even better than models fine-tuned

using the fine-tuning II method described earlier.

原始提出 LoRA ⽅法的论⽂指出，使⽤ LoRA 的模型在多个任务特定基准上

略微优于使⽤适配器⽅法的模型。 通常，LoRA 甚⾄⽐前⾯描述的 fine-

tuning II ⽅法微调的模型性能更好。

Reinforcement Learning with Human
Feedback
The previous section focused on ways to make fine-tuning more efficient.

Switching gears, how can we improve the modeling performance of LLMs via fine-

tuning?

ΔW × W A W B

 x

 h x W

 h x W_A W_B scalar

 h

def lora_forward_matmul():

= . # Regular matrix multiplication

+= . (.) *

return

python

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 149 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

The conventional way to adapt or fine-tune an LLM for a new target domain or

task is to use a supervised approach with labeled target data. For instance, the

fine-tuning II approach allows us to adapt a pretrained LLM and fine-tune it

on a target task such as sentiment classification, using a dataset that contains

texts with sentiment labels like positive, neutral, and negative.

监督微调，⽤有标签的⽬标数据集，训练 LLM 以适应新任务。

Supervised fine-tuning is a foundational step in training an LLM. An additional,

more advanced step is reinforcement learning with human feedback

(RLHF) , which can be used to further improve the model's alignment with

human preferences. For example, ChatGPT and its predecessor, InstructGPT, are

two popular examples of pretrained LLMs (GPT-3) fine-tuned using RLHF.

强化学习，⽤⼈类反馈，训练 LLM 以适应⼈类偏好。

In RLHF , a pretrained model is fine-tuned using a combination of supervised

learning and reinforcement learning. This approach was popularized by the

original ChatGPT model, which was in turn based on InstructGPT. Human

feedback is collected by having humans rank or rate different model outputs,

providing a reward signal. The collected reward labels can be used to train a

reward model that is then used to guide the LLMs' adaptation to human

preferences. The reward model is learned via supervised learning, typically using a

pretrained LLM as the base model, and is then used to adapt the pretrained LLM

to human preferences via additional fine-tuning. The training in this additional

fine-tuning stage uses a flavor of reinforcement learning called proximal policy

optimization (PPO).

在 RLHF 中，使⽤监督学习和强化学习相结合的⽅法，训练 LLM 以适应⼈类

偏好。

⼈类反馈被收集，通过⼈类对不同模型输出的排序或评分，提供奖励信

号。

收集到的奖励标签可以⽤于训练奖励模型，然后⽤于指导 LLM 适应⼈类

偏好。

奖励模型通过监督学习学习，通常使⽤预训练 LLM 作为基础模型，然后

⽤于进⼀步微调预训练 LLM 以适应⼈类偏好。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 150 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

在额外的微调阶段，使⽤⼀种称为 proximal policy optimization 的强化

学习⽅法进⾏训练。

RLHF uses a reward model instead of training the pretrained model on the human

feedback directly because involving humans in the learning process would create

a bottleneck since we cannot obtain feedback in realtime.

使⽤奖励模型⽽不是直接在⼈类反馈上训练预训练模型，因为涉及⼈类的学

习过程会创建瓶颈，因为⽆法实时获得反馈。

Adapting Pretrained Language Models
While fine-tuning all layers of a pretrained LLM remains the gold standard for

adaption to new target tasks, several efficient alternatives exist for leveraging

pretrained transformers. For instance, we can effectively apply LLMs to new tasks

while minimizing computational costs and resources by utilizing feature-based

methods, in-context learning, or parameter-efficient fine-tuning techniques.

The three conventional methods -- feature-based approach, fine-tuning I, and

fine-tuning II -- provide different computational efficiency and performance trade-

offs. Parameter-efficient fine-tuning methods like soft prompt tuning, prefix

tuning, and adapter methods further optimize the adaptation process, reducing

the number of parameters to be updated. Meanwhile, RLHF presents an

alternative approach to supervised fine-tuning, potentially improving modeling

performance.

三种传统⽅法 -- 特征基⽅法、微调 I 和微调 II -- 提供了不同的计算效率和性

能权衡。

参数⾼效微调⽅法，如软提示词调优、前缀调优和适配器⽅法，进⼀步

优化了适配过程，减少了需要更新的参数数量。

RLHF 提供了⼀种替代监督微调的⽅法，可能提⾼建模性能。

In sum, the versatility and efficiency of pretrained LLMs continue to advance,

offering new opportunities and strategies for effectively adapting these models to

a wide array of tasks and domains. As research in this area progresses, we can

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 151 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

expect further improvements and innovations in using pretrained language

models.

Exercises
18-1. When does it make more sense to use in-context learning rather than fine-

tuning, and vice versa?

18-2. In prefix tuning, adapters, and LoRA, how can we ensure that the model

preserves (and does not forget) the original knowledge?

References
The paper introducing the GPT-2 model: Alec Radford et al., "Language Models

Are Unsupervised Multitask Learners"? (2019), https://

www.semanticscholar.org/paper/Language-Models-are-Unsupervised -

Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573.

The paper introducing the GPT-3 model: Tom B. Brown et al., "Language

Models Are Few-Shot Learners"? (2020), https://arxiv.org/abs/2005.14165.

The automatic prompt engineering method, which proposes using another

LLM for automatic prompt generation and evaluation: Yongchao Zhou et al.,

"Large Language Models Are Human-Level Prompt Engineers"? (2023),

https://arxiv.org/abs/2211.01910.

LlamaIndex is an example of an indexing approach that leverages in-context

learning: https://github.com/jerryjliu/llama_index.

DSPy is a popular open source library for retrieval augmentation and indexing:

https://github.com/stanfordnlp/dsp.

A first instance of soft prompting: Brian Lester, Rami Al-Rfou, and Noah

Constant, "The Power of Scale for Parameter-Efficient Prompt Tuning"? (2021),

https://arxiv.org/abs/2104.08691.

The paper that first described prefix tuning: Xiang Lisa Li and Percy Liang,

"Prefix-Tuning: Optimizing Continuous Prompts for Generation"? (2021),

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 152 页，共 239 页

https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2211.01910
https://github.com/jerryjliu/llama_index
https://github.com/stanfordnlp/dsp
https://arxiv.org/abs/2104.08691
https://github.com/ningg/Machine-Learning-Q-and-AI

https://arxiv.org/abs/2101.00190.

The paper introducing the original adapter method: Neil Houlsby et al.,

"Parameter-Efficient Transfer Learning for NLP"? (2019)

https://arxiv.org/abs/1902.00751.

The paper introducing the LoRA method: Edward J. Hu et al., "LoRA: Low-Rank

Adaptation of Large Language Models"? (2021),

https://arxiv.org/abs/2106.09685.

A survey of more than 40 research papers covering parameter- efficient fine-

tuning methods: Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky,

"Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning"?

(2023), https://arxiv.org/abs/ 2303.15647.

The InstructGPT paper: Long Ouyang et al., "Training Language Models to

Follow Instructions with Human Feedback"? (2022),

https://arxiv.org/abs/2203.02155.

Proximal policy optimization, which is used for reinforcement learning with

human feedback: John Schulman et al., "Proximal Policy Optimization

Algorithms"? (2017), https://arxiv.org/abs/1707.06347.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 153 页，共 239 页

https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1707.06347
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 19: Evaluating Generative
Large Language Models
What are the standard metrics for evaluating the quality of text generated by

large language models, and why are these metrics useful?

Perplexity , BLEU , ROUGE , and BERTScore are some of the most common

evaluation metrics used in natural language processing to assess the performance

of LLMs across various tasks. Although there is ultimately no way around human

quality judgments, human evaluations are tedious, expensive, hard to automate,

and subjective. Hence, we develop metrics to provide objective summary scores

to measure progress and compare different approaches.

最终，还是需要⼈⼯评估，但是，⼈⼯评估，费时费⼒，且主观性较强。因

此，需要开发⼀些客观的评估指标，来衡量模型的性能。

This chapter discusses the difference between intrinsic and extrinsic performance

metrics for evaluating LLMs, and then it dives deeper into popular metrics like

BLEU, ROUGE, and BERTScore and provides simple hands-on examples for

illustration purposes.

本章，主要介绍，如何使⽤ Perplexity , BLEU , ROUGE , and

BERTScore 来评估 LLM 的性能。

Evaluation Metrics for LLMs
The perplexity metric is directly related to the loss function used for

pretraining LLMs and is commonly used to evaluate text generation and text

completion models. Essentially, it quantifies the average uncertainty of the model

in predicting the next word in a given context -- the lower the perplexity, the

better.

困惑度，是衡量模型在给定上下⽂下，预测下⼀个词的平均不确定性。困惑

度越低，模型越好。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 154 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

The bilingual evaluation understudy (BLEU) score is a widely used

metric for evaluating the quality of machine-generated translations. It measures

the overlap of n-grams between the machine-generated translation and a set of

human-generated reference translations. A higher BLEU score indicates better

performance, ranging from 0 (worst) to 1 (best).

BLEU 是评估机器翻译质量的常⽤指标，它衡量机器翻译与⼀组⼈⼯翻译的

n-gram 重叠程度。BLEU 得分越⾼，表示翻译质量越好，得分范围从 0（最

差）到 1（最佳）。

The recall-oriented understudy for gisting evaluation (ROUGE) score

is a metric primarily used for evaluating automatic summarization (and

sometimes machine translation) models. It measures the overlap between the

generated summary and reference summaries.

ROUGE 是评估⾃动摘要质量的常⽤指标，它衡量⽣成摘要与⼀组⼈⼯摘要

的重叠程度。

We can think of perplexity as an intrinsic metric and BLEU and ROUGE as

extrinsic metrics . To illustrate the difference between the two types of

metrics, think of optimizing the conventional cross entropy to train an image

classifier. The cross entropy is a loss function we optimize during training, but our

end goal is to maximize the classification accuracy. Since classification accuracy

cannot be optimized directly during training, as it's not differentiable, we

minimize the surrogate loss function like the cross entropy. Minimizing the cross

entropy loss more or less correlates with maximizing the classification accuracy.

我们可以将困惑度视为⼀个 内⽣指标 ，⽽ BLEU 和 ROUGE 视为 外⽣指

标 。

为了说明这两种指标之间的差异，可以考虑优化传统的交叉熵来训练图

像分类器。

交叉熵是⼀个在训练过程中优化的损失函数，但我们的最终⽬标是最⼤

化分类准确率。

由于分类准确率不能在训练过程中直接优化，因为它不是可微的，因此

我们最⼩化替代损失函数，如交叉熵。

最⼩化交叉熵损失，与最⼤化分类准确率相关。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 155 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Perplexity is often used as an evaluation metric to compare the performance

of different language models, but it is not the optimization target during training.

BLEU and ROUGE are more related to classification accuracy, or rather precision

and recall. In fact, BLEU is a precision-like score to evaluate the quality of a

translated text, while ROUGE is a recall-like score to evaluate summarized texts.

困惑度，通常⽤于评估不同语⾔模型的性能，但不是训练的⽬标。

BLEU 和 ROUGE 与分类准确率相关，或者更准确地说，与精确率和召回

率相关。

事实上，BLEU 是⼀个类似于精确率的评分，⽤于评估翻译⽂本的质量，

⽽ ROUGE 是⼀个类似于召回率的评分，⽤于评估摘要⽂本的质量。

The following sections discuss the mechanics of these metrics in more detail.

Perplexity

Perplexity is closely related to the cross entropy directly minimized during

training, which is why we refer to perplexity as an intrinsic metric.

Perplexity is defined as , where is the cross entropy

between the true distribution of words and the predicted distribution of words

, and is the sentence length (the number of words or tokens) used to

normalize the score. As cross entropy decreases, perplexity also decreases—the

lower the perplexity, the better. While we typically compute cross entropy using a

natural logarithm, we calculate cross entropy and perplexity with a base-2

logarithm for the intuitive relationship to hold. (However, whether we use a base-

2 or natural logarithm is only a minor implementation detail.)

困惑度，与交叉熵直接相关，因此我们将其称为内⽣指标。 FIXME: 交叉熵

损失，不理解 ???

In practice, since the probability for each word in the target sentence is always 1,

we compute the cross entropy as the logarithm of the probability scores returned

by the model we want to evaluate. In other words, if we have the predicted

probability score for each word in a sentence , we can compute the perplexity

directly as follows:

2H(p,q)/n H(p, q)
p

q n

s

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 156 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

where is the sentence or text we want to evaluate, such as "The quick brown fox

jumps over the lazy dog," is the probability scores returned by the model,

and is the number of words or tokens. For example, if the model returns the

probability scores , the

perplexity is:

If the sentence was "The fast black cat jumps over the lazy dog," with probabilities

[0.99, 0.65, 0.13, 0.05, 0.21, 0.99, 0.99, 0.99], the corresponding perplexity would

be 2.419.

You can find a code implementation and example of this calculation in the

supplementary/q19-evaluation-llms subfolder at

https://github.com/rasbt/MachineLearning-QandAI-book.

BLEU Score

BLEU is the most popular and most widely used metric for evaluating translated

texts. It's used in almost all LLMs capable of translation, including popular tools

such as OpenAI's Whisper and GPT models.

BLEU is a reference-based metric that compares the model output to human-

generated references and was first developed to capture or automate the essence

of human evaluation. In short, BLEU measures the lexical overlap between the

model output and the human-generated references based on a precision score.

BLEU 是⼀个基于精确率的指标，它衡量模型输出与⼈⼯⽣成参考之间的词

汇重叠程度。

In more detail, as a precision-based metric, BLEU counts how many words in the

generated text (candidate text) occur in the reference text divided by the

candidate text length (the number of words), where the reference text is a sample

translation provided by a human, for example. This is commonly done for n-grams

Perplexity(s) = 2− log (p(s))n
1

2

s

p(s)
n

[0.99, 0.85, 0.89, 0.99, 0.99, 0.99, 0.99, 0.99]

 =

=

2− ⋅ log p(w)8
1 ∑i 2 i

2− ⋅ log (0.99×0.85×0.89×0.99×0.99×0.99×0.99×0.99)8
1 ∑ 2

1.043

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 157 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

rather than individual words, but for simplicity, we will stick to words or 1-grams.

(In practice, BLEU is often computed for 4-grams.)

Figure 19.1 demonstrates the BLEU score calculation, using the example of

calculating the 1-gram BLEU score. The individual steps in Figure 19.1 illustrate

how we compute the 1-gram BLEU score based on its individual components, the

weighted precision times a brevity penalty. You can also find a code

implementation of this calculation in the supplementary/q15-text-augment

subfolder at https://github.com/rasbt/MachineLearning-QandAI-book.

Figure 19.1

BLEU has several shortcomings, mostly owing to the fact that it measures string

similarity, and similarity alone is not sufficient for capturing quality. For instance,

sentences with similar words but different word orders might still score high, even

though altering the word order can significantly change the meaning of a

sentence and result in poor grammatical structure. Furthermore, since BLEU relies

on exact string matches, it is sensitive to lexical variations and is incapable of

identifying semantically similar translations that use synonyms or paraphrases. In

other words, BLEU may assign lower scores to translations that are, in fact,

accurate and meaningful.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 158 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

BLEU 有以下⼏个缺点，主要是由于它衡量的是字符串相似度，⽽相似度本

身不⾜以捕捉质量。

例如，具有相似单词但不同词序的句⼦可能得分很⾼，即使改变词序可

能会显著改变句⼦的意义并导致糟糕的语法结构。

此外，由于 BLEU 依赖于精确的字符串匹配，它对词汇变体很敏感，⽆

法识别使⽤同义词或释义的语义相似翻译。

换句话说，BLEU 可能会给那些实际上准确且有意义的翻译，分配较低的

分数。

The original BLEU paper found a high correlation with human evaluations, though

this was disproven later.

原始的 BLEU 论⽂发现与⼈⼯评估有很⾼的相关性，尽管后来被证明是错误

的。

Is BLEU flawed? Yes. Is it still useful? Also yes. BLEU is a helpful tool to measure or

assess whether a model improves during training, as a proxy for fluency. However,

it may not reliably give a correct assessment of the quality of the generated

translations and is not well suited for detecting issues. In other words, it's best

used as a model selection tool, not a model evaluation tool.

尽管 BLEU 有上述缺点，但它仍然是有⽤的，可以作为流畅性的代理来衡量

或评估模型在训练中的改进。 然⽽，它可能⽆法可靠地评估⽣成翻译的质

量，并且不适合检测问题。换句话说，它最好⽤作模型选择⼯具，⽽不是模

型评估⼯具。

At the time of writing, the most popular alternatives to BLEU are METEOR and

COMET (see the References section at the end of this chapter for more details).

⽬前，最流⾏的替代 BLEU 的指标是 METEOR 和 COMET（⻅本章末尾的

"METEOR 和 COMET" 部分，了解更多细节）。

ROUGE Score

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 159 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

While BLEU is commonly used for translation tasks, ROUGE is a popular metric for

scoring text summaries.

BLEU 通常⽤于翻译任务，但 ROUGE 是⼀个流⾏的评分⽂本摘要的指标。

There are many similarities between BLEU and ROUGE. The precision-based BLEU

score check shows how many words in the candidate translation occur in the

reference translation. The ROUGE score also takes a flipped approach, checking

how many words in the reference text appear in the generated text (here typically

a summarization instead of a translation); this can be interpreted as a recall-based

score.

现代的实现将 ROUGE 计算为 F1 分数，这是召回率（参考⽂本中出现多少个

词）和精确率（候选⽂本中出现多少个词）的调和平均值。

Modern implementations compute ROUGE as an F1 score that is the harmonic

mean of recall (how many words in the reference occur in the candidate text) and

precision (how many words in the candidate text occur in the reference text). For

example, Figure 19.2 shows a 1-gram ROUGE score computation (though in

practice, ROUGE is often computed for bigrams, that is, 2-grams).

Figure 19.2

There are other ROUGE variants beyond ROUGE-1 (the F1 score--based ROUGE

score for 1-grams):

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 160 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

ROUGE-N Measures the overlap of n-grams between the candidate and

reference summaries. For example, ROUGE-1 would look at the overlap of

individual words (1-grams), while ROUGE-2 would consider the overlap of 2-

grams (bigrams).

ROUGE-L Measures the longest common subsequence (LCS) between the

candidate and reference summaries. This metric captures the longest co-

occurring in-order subsequence of words, which may have gaps in between

them.

ROUGE-S Measures the overlap of skip-bigrams, or word pairs with a flexible

number of words in between them. It can be useful to capture the similarity

between sentences with different word orderings.

ROUGE shares similar weaknesses with BLEU. Like BLEU, ROUGE does not account

for synonyms or paraphrases. It measures the n-gram overlap between the

candidate and reference summaries, which can lead to lower scores for

semantically similar but lexically different sentences. However, it's still worth

knowing about ROUGE since, according to a study, all papers introducing new

summarization models at computational linguistics conferences in 2021 used it,

and 69 percent of those papers used only ROUGE.

ROUGE 与 BLEU 有类似的缺点。与 BLEU ⼀样，ROUGE 不考虑同义词或释

义。 它衡量候选⽂本和参考⽂本的 n-gram 重叠，这可能导致语义相似但词

汇不同的句⼦的得分较低。 然⽽，了解 ROUGE 仍然是有价值的，因为根据

⼀项研究，2021 年计算语⾔学会议上介绍的所有新摘要模型都使⽤了它，

其中 69% 的论⽂只使⽤了 ROUGE。

BERTScore

Another more recently developed extrinsic metric is BERTScore .

For readers familiar with the inception score for generative vision models,

BERTScore takes a similar approach, using embeddings from a pretrained model

(for more on embeddings, see Chapter [ch01]). Here, BERTScore measures the

similarity between a candidate text and a reference text by leveraging the

contextual embeddings produced by the BERT model (the encoder-style

transformer discussed in Chapter [ch17]).

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 161 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

The steps to compute BERTScore are as follows:

1. Obtain the candidate text via the LLM you want to evaluate (PaLM, LLaMA,

GPT, BLOOM, and so on).

2. Tokenize the candidate and reference texts into subwords, preferably using

the same tokenizer used for training BERT.

3. Use a pretrained BERT model to create the embeddings for all tokens in the

candidate and reference texts.

4. Compare each token embedding in the candidate text to all token embeddings

in the reference text, computing their cosine similarity.

5. Align each token in the candidate text with the token in the reference text that

has the highest cosine similarity.

6. Compute the final BERTScore by taking the average similarity scores of all

tokens in the candidate text.

Figure 19.3 further illustrates these six steps. You can also find a computational

example in the subfolder/q15-text-augment subfolder at

https://github.com/rasbt/MachineLearning-QandAI-book.

Figure 19.3

BERTScore can be used for translations and summaries, and it captures the

semantic similarity better than traditional metrics like BLEU and ROUGE. However,

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 162 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

BERTScore is more robust in paraphrasing than BLEU and ROUGE and captures

semantic similarity better due to its contextual embeddings. Also, it may be

computationally more expensive than BLEU and ROUGE, as it requires using a

pretrained BERT model for the evaluation. While BERTScore provides a useful

automatic evaluation metric, it's not perfect and should be used alongside other

evaluation techniques, including human judgment.

Surrogate Metrics
All metrics covered in this chapter are surrogates or proxies to evaluate how

useful the model is in terms of measuring how well the model compares to

human performance for accomplishing a goal. As mentioned earlier, the best way

to evaluate LLMs is to assign human raters who judge the results. However, since

this is often expensive and not easy to scale, we use the aforementioned metrics

to estimate model performance. To quote from the InstructGPTpaper "Training

Language Models to Follow Instructions with Human Feedback": "Public NLP

datasets are not reflective of how our language models are used ... [They] are

designed to capture tasks that are easy to evaluate with automatic metrics."

这些指标只是对模型实际表现的近似衡量。正如InstructGPT论⽂所说，公开

的NLP数据集并不能真实反映模型的实际应⽤场景，它们主要⽤于便于⾃动

化指标评估的任务。

Besides perplexity, ROUGE, BLEU, and BERTScore, several other popular

evaluation metrics are used to assess the predictive performance of LLMs.

Exercises
19-1. In step 5 of Figure 19.3, the cosine similarity between the two embeddings

of "cat"? is not 1.0, where 1.0 indicates a maximum cosine similarity. Why is that?

19-2. In practice, we might find that the BERTScore is not symmetric. This means

that switching the candidate and reference sentences could result in different

BERTScores for specific texts. How could we address this?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 163 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

References
The paper proposing the original BLEU method: Kishore Papineni et al.,"BLEU:

A Method for Automatic Evaluation of Machine Translation"? (2002),

https://aclanthology.org/P02-1040/.

A follow-up study disproving BLEU's high correlation with human evaluations:

Chris Callison-Burch, Miles Osborne, and Philipp Koehn, "Re-Evaluating the

Role of BLEU in Machine Translation Research"? (2006),

https://aclanthology.org/E06-1032/.

The shortcomings of BLEU, based on 37 studies published over 20 years:

Benjamin Marie, "12 Critical Flaws of BLEU"? (2022),

https://medium.com/@bnjmn_marie/12-critical-flaws-of-bleu-

1d790ccbe1b1.

The paper proposing the original ROUGE method: Chin-Yew Lin,

"ROUGE:APackageforAutomaticEvaluationofSummaries"? (2004),

https://aclanthology.org/W04-1013/.

A survey on the usage of ROUGE in conference papers: Sebastian Gehrmann,

Elizabeth Clark, and Thibault Sellam, "Repairing the Cracked Foundation: A

Survey of Obstacles in Evaluation Practices for Generated Text"? (2022),

https://arxiv.org/abs/2202.06935.

BERTScore, an evaluation metric based on a large language model: Tianyi

Zhang et al., "BERTScore: Evaluating Text Generation with BERT"? (2019),

https://arxiv.org/abs/1904.09675.

A comprehensive survey on evaluation metrics for large language models: Asli

Celikyilmaz, Elizabeth Clark, and Jianfeng Gao, "Evaluation of Text Generation:

A Survey"? (2021), https://arxiv.org/abs/2006.14799.

METEOR is a machine translation metric that improves upon BLEU by using

advanced matching techniques and aiming for better

correlationwithhumanjudgmentatthesentencelevel:SatanjeevBanerjee and

Alon Lavie, "METEOR: An Automatic Metric for MT Evaluation with Improved

Correlation with Human Judgments"? (2005), https://aclanthology.org/W05-

0909/.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 164 页，共 239 页

https://aclanthology.org/P02-1040/
https://aclanthology.org/E06-1032/
https://medium.com/@bnjmn_marie/12-critical-flaws-of-bleu-1d790ccbe1b1
https://medium.com/@bnjmn_marie/12-critical-flaws-of-bleu-1d790ccbe1b1
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2202.06935
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2006.14799
https://aclanthology.org/W05-0909/
https://aclanthology.org/W05-0909/
https://github.com/ningg/Machine-Learning-Q-and-AI

COMET is a neural framework that sets new standards for correlating machine

translation quality with human judgments, using cross-lingual pretrained

models and multiple types of evaluation: Ricardo Rei et al., "COMET: A Neural

Framework for MT Evaluation"? (2020), https://arxiv.org/abs/2009.09025.

The InstructGPT paper: Long Ouyang et al., "Training Language Models to

Follow Instructions with Human Feedback"? (2022),

https://arxiv.org/abs/2203.02155.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 165 页，共 239 页

https://arxiv.org/abs/2009.09025
https://arxiv.org/abs/2203.02155
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 20: Stateless and Stateful
Training
What is the difference between stateless and stateful training workflows in the

context of production and deployment systems?

Stateless training and stateful training refer to different ways of training a

production model.

Tips: ⽆状态训练 stateless 和 有状态训练 stateful ，是两种不同的训

练⽅式；训练⽣产模型时，需要考虑⽤哪种⽅式。

Stateless (Re)training
In stateless training, the more conventional approach, we first train an initial

model on the original training set and then retrain it as new data arrives. Hence,

stateless training is also commonly referred to as stateless retraining.

Tips: ⽆状态训练，是先训练⼀个 初始模型 ，然后在新数据到达时，重新训

练模型；可以简单认为是 树状结构 ，初始模型是 ⽗节点 、衍⽣出⼀堆 叶⼦

节点 模型.

As Figure 20.1 shows, we can think of stateless retraining as a sliding window

approach in which we retrain the initial model on different parts of the data from

a given data stream.

Tips: 图示中， 初始模型 是 ⽗节点 ， 新模型 是 叶⼦节点 ， 新模型 是基于

初始模型 训练的；训练新模型时，会截取 滑动窗⼝ 数据。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 166 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 20.1

For example, to update the initial model in Figure 20.1 (Model 1) to a newer

model (Model 2), we train the model on 30 percent of the initial data and 70

percent of the most recent data at a given point in time.

Stateless retraining is a straightforward approach that allows us to adapt the

model to the most recent changes in the data and feature-target relationships via

retraining the model from scratch in user-defined checkpoint intervals. This

approach is prevalent with conventional machine learning systems that cannot be

fine-tuned as part of a transfer or self-supervised learning workflow (see

Chapter [ch02]).

Tips: 传统的模型，中⽆状态训练，⽐较流⾏，⽐如 随机森林 、 梯度提升

等，这些都是⽆法 微调 的

For example, standard implementations of tree-based models, such as random

forests and gradient boosting (XGBoost, CatBoost, and LightGBM), fall into this

category.

Stateful Training
In stateful training, we train the model on an initial batch of data and then update

it periodically (as opposed to retraining it) when new data arrives.

Tips: 有状态的训练，可以认为是 链式结构 ，初始模型 -> 新模型 -> 新模型

-> ... ， 每次都基于最新模型叠加⽽来.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 167 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

As illustrated in Figure 20.2, we do not retrain the initial model (Model1.0) from

scratch; instead, we update or fine-tune it as new data arrives. This approach is

particularly attractive for models compatible with transfer learning or self-

supervised learning.

Figure 20.2

The stateful approach mimics a transfer or self-supervised learning workflow

where we adopt a pretrained model for fine-tuning. However, stateful training

differs fundamentally from transfer and self-supervised learning because it

updates the model to accommodate concept, feature, and label drifts. In contrast,

transfer and self-supervised learning aim to adopt the model for a different

classification task. For instance, in transfer learning, the target labels often differ.

In self-supervised learning, we obtain the target labels from the dataset features.

Tips: 有状态的训练，跟 迁移学习 、 ⾃监督学习 ，有本质区别；有状态的训

练，会更新模型，以适应概念、特征、标签的漂移；⽽迁移学习、⾃监督学

习，是基于预训练模型，进⾏微调。

One significant advantage of stateful training is that we do not need to store data

for retraining; instead, we can use it to update the model as soon as it arrives.

This is particularly attractive when data storage is a concern due to privacy or

resource limitations.

Tips: 有状态的训练，不需要存储数据，可以及时更新模型；这在 隐私 或

资源有限 的情况下，特别有⽤。

Exercises
20-1. Suppose we train a classifier for stock trading recommendations using a

random forest model, including the moving average of the stock price as a

feature. Since new stock market data arrives daily, we are considering how to

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 168 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

update the classifier daily to keep it up to date. Should we take a stateful training

or stateless retraining approach to update the classifier?

Answer, Click to expand

20-2. Suppose we deploy a large language model (transformer) such as ChatGPT

that can answer user queries. The dialogue interface includes thumbs-up and

thumbs-down buttons so that users can give direct feedback based on the

generated queries. While collecting the user feedback, we don't update the model

immediately as new feedback arrives. However, we are planning to release a new

or updated model at least once per month. Should we use stateless or stateful

retraining for this model?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 169 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 21: Data-Centric AI
What is data-centric AI, how does it compare to the conventional modeling

paradigm, and how do we decide whether it's the right fit for a project?

Data-centric AI is a paradigm or workflow in which we keep the model training

procedure fixed and iterate over the dataset to improve the predictive

performance of a model. The following sections define what data-centric AI means

in more detail and compare it to conventional model-centric approaches.

Tips: 数据驱动 AI 是⼀种范式或⼯作流，其中我们保持模型训练过程不

变，通过迭代数据集来提⾼模型的预测性能。

Data-Centric vs. Model-Centric AI
In the context of data-centric AI, we can think of the conventional workflow, which

is often part of academic publishing, as model-centric AI. However, in an

academic research setting, we are typically interested in developing new methods

(for example, neural network architectures or loss functions). Here, we consider

existing benchmark datasets to compare the new method to previous approaches

and determine whether it is an improvement over the status quo.

Tips: 在 数据驱动 AI 的上下⽂中，我们可以将传统的学术届优化的模型视

为 模型驱动 AI 。

在学术研究环境中，我们通常对开发新⽅法（例如神经⽹络架构或损失

函数）感兴趣。

我们考虑现有的基准数据集，以⽐较新⽅法与先前的⽅法，并确定它是

否更优。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 170 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 21.1

While data-centric AI is a relatively new term, the idea behind it is not. Many

people I've spoken with say they used a data-centric approach in their projects

before the term was coined. In my opinion, data-centric AI was created to make

"caring about data quality"? attractive again, as data collection and curation are

often considered tedious or thankless. This is analogous to how the term deep

learning made neural networks interesting again in the early 2010s.

Tips: 虽然 数据驱动 AI 是⼀个相对较新的术语，但其背后的理念并不新。

许多⼈告诉我，在他们使⽤ 数据驱动 AI 之前，他们已经在项⽬中使⽤

了 数据驱动 AI 。

在我看来， 数据驱动 AI 的称呼，是为了让 关注数据质量 再次变得有吸

引⼒，因为数据收集和整理通常被认为是很繁琐或⽆意义的。

这类似于 深度学习 在2010年代初期让神经⽹络变得有趣起来。

Do we need to choose between data-centric and model-centric AI, or can we rely

on both? In short, data-centric AI focuses on changing the data to improve

performance, while model-centric approaches focus on modifying the model to

improve performance. Ideally, we should use both in an applied setting where we

want to get the best possible predictive performance. However, in a research

setting or an exploratory stage of an applied project, working with too many

variables simultaneously is messy. If we change both model and data at once, it's

hard to pinpoint which change is responsible for the improvement.

Tips: 我们是否需要在 数据驱动 AI 和 模型驱动 AI 之间做出选择，或者我

们可以依赖两者？

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 171 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

简⽽⾔之， 数据驱动 AI 专注于改变数据以提⾼性能，⽽ 模型驱动 AI

专注于修改模型以提⾼性能。

理想情况下，我们应该同时使⽤两者。

It is important to emphasize that data-centric AI is a paradigm and workflow, not

a particular technique. Data-centric AI therefore implicitly includes the following:

Analyses and modifications of training data, from outlier removal to missing

data imputation

Data synthesis and data augmentation techniques

Data labeling and label-cleaning methods

The classic active learning setting where a model suggests which data points

to label

Tips: 重要的是要强调， 数据驱动 AI 是⼀种范式和流程，⽽不是⼀种特定

的技术，隐含地包括以下内容：

训练数据的分析和修改，从异常值去除到缺失数据插补

数据合成和数据增强技术

数据标注和标签清理⽅法

经典主动学习设置，其中模型建议哪些数据点需要标注

We consider an approach data centric if we change only the data (using the

methods listed here), not the other aspects of the modeling pipeline.

In machine learning and AI, we often use the phrase "garbage in, garbage out"?

meaning that poor-quality data will result in a poor predictive model. In other

words, we cannot expect a well-performing model from a low-quality dataset.

I've observed a common pattern in applied academic projects that attempt to use

machine learning to replace an existing methodology. Often, researchers have

only a small dataset of examples (say, hundreds of training examples). Labeling

data is often expensive or considered boring and thus best avoided. In these

cases, the researchers spend an unreasonable amount of time trying out different

machine-learning algorithms and model tuning. To resolve this issue, investing

additional time or resources in labeling additional data would be worthwhile.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 172 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips:

通常，研究⼈员，只有⼀个 ⼩数据集 （例如，⼏百个训练样本）。

标注数据通常很 昂贵 或被认为很 ⽆聊 ，因此最好避免。

在这些情况下，研究⼈员花费了不合理的时间来尝试不同的机器学习算

法和模型调优。

为了解决这个问题，投资额外的时间或资源来 标注更多的数据 将是有价

值的。

The main advantage of data-centric AI is that it puts the data first so that if we

invest resources to create a higher-quality dataset, all modeling approaches will

benefit from it downstream.

Tips: 数据驱动 AI 的主要优势在于，它将数据放在⾸位，因此如果我们投资

资源来创建更⾼质量的数据集，所有建模⽅法都将从中受益。

Recommendations
Taking a data-centric approach is often a good idea in an applied project where

we want to improve the predictive performance to solve a particular problem. In

this context, it makes sense to start with a modeling baseline and improve the

dataset since it's often more worthwhile than trying out bigger, more expensive

models.

If our task is to develop a new or better methodology, such as a new neural

network architecture or loss function, a model-centric approach might be a better

choice. Using an established benchmark dataset without changing it makes it

easier to compare the new modeling approach to previous work. Increasing the

model size usually improves performance, but so does the addition of training

examples. Assuming small training sets (< 2k) for classification, extractive question

answering, and multiple-choice tasks, adding a hundred examples can result in

the same performance gain as adding billions of parameters.

In a real-world project, alternating between data-centric and model-centric modes

makes a lot of sense. Investing in data quality early on will benefit all models.

Once a good dataset is available, we can begin to focus on model tuning to

improve performance.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 173 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips: 在实际项⽬中，交替使⽤ 数据驱动 和 模型驱动 模式是有意义的。

早期投资于 数据质量 将使所有模型受益。

⼀旦有了⼀个好的数据集，我们可以开始专注于 模型调优 以提⾼性能。

Exercises
21-1. A recent trend is the increased use of predictive analytics in healthcare. For

example, suppose a healthcare provider develops an AI system that analyzes

patients' electronic health records and provides recommendations for lifestyle

changes or preventive measures. For this, the provider requires patients to

monitor and share their health data (such as pulse and blood pressure) daily. Is

this an example of data-centric AI?

21-2. Suppose we train a ResNet-34 convolutional neural network to classify

images in the CIFAR-10 and ImageNet datasets. To reduce overfitting and improve

classification accuracy, we experiment with data augmentation techniques such

as image rotation and cropping. Is this approach data centric?

References
An example of how adding more training data can benefit model performance

more than an increase in model size: Yuval Kirstain et al., "A Few More

Examples May Be Worth Billions of Parameters"? (2021),

https://arxiv.org/abs/2110.04374.

Cleanlab is an open source library that includes methods for improving

labeling errors and data quality in computer vision and natural language

processing contexts: https://github.com/cleanlab/cleanlab.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 174 页，共 239 页

https://arxiv.org/abs/2110.04374
https://github.com/cleanlab/cleanlab
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 22: Speeding Up Inference
What are techniques to speed up model inference through optimization without

changing the model architecture or sacrificing accuracy?

In machine learning and AI, model inference refers to making predictions or

generating outputs using a trained model. The main general techniques for

improving model performance during inference include parallelization,

vectorization, loop tiling, operator fusion, and quantization, which are discussed

in detail in the following sections.

Tips:

优化模型推理速度，有多种⽅法，包括： 并⾏化 、 向量化 、 循环分

块 、 算⼦融合 、 量化 等。

这些⽅法，将在后续章节中详细讨论。

Parallelization
One common way to achieve better parallelization during inference is to run the

model on a batch of samples rather than on a single sample at a time. This is

sometimes also referred to as batched inference and assumes that we are

receiving multiple input samples or user inputs simultaneously or within a short

time window, as illustrated in Figure 22.1.

Tips: 并⾏化，也被称为 批量推理 ，同时或短时间窗⼝内，接收到多个输⼊

样本或⽤户输⼊，模型同时处理。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 175 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 22.1

Figure 22.1 shows sequential inference processing one item at a time, which

creates a bottleneck if there are several samples waiting to be classified. In

batched inference, the model processes all four samples at the same time.

Vectorization
Vectorization refers to performing operations on entire data structures, such as

arrays (tensors) or matrices, in a single step rather than using iterative constructs

like for loops. Using vectorization, multiple operations from the loop are

performed simultaneously using single instruction, multiple data (SIMD)

processing, which is available on most modern CPUs.

Tips: 向量化，也被称为 单指令多数据 ，在现代 CPU 上，可以同时处理多个

数据。

This approach takes advantage of the low-level optimizations in many computing

systems and often results in significant speedups. For example, it might rely on

BLAS.

BLAS (which is short for Basic Linear Algebra Subprograms) is a specification that

prescribes a set of low-level routines for performing common linear algebra

operations such as vector addition, scalar multiplication, dot products, matrix

multiplication, and others. Many array and deep learning libraries like NumPy and

PyTorch use BLAS under the hood.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 176 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

To illustrate vectorization with an example, suppose we wanted to compute the

dot product between two vectors. The non-vectorized way of doing this would be

to use a for loop, iterating over each element of the array one by one. However,

this can be quite slow, especially for large arrays. With vectorization, you can

perform the dot product operation on the entire array at once, as shown in Figure

22.2.

Figure 22.2

In the context of linear algebra or deep learning frameworks like TensorFlow and

PyTorch, vectorization is typically done automatically. This is because these

frameworks are designed to work with multidimensional arrays (also known as

tensors), and their operations are inherently vectorized. This means that when

you perform functions using these frameworks, you automatically leverage the

power of vectorization, resulting in faster and more efficient computations.

Loop Tiling
Loop tiling (also often referred to as loop nest optimization) is an advanced

optimization technique to enhance data locality by breaking down a loop's

iteration space into smaller chunks or "tiles."? This ensures that once data is

loaded into cache, all possible computations are performed on it before the cache

is cleared.

Tips: 循环分块，也被称为 循环嵌套优化 ，将循环的迭代空间分成⼩块，确

保数据加载到缓存后，所有可能的计算都在缓存中完成，然后缓存被清除。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 177 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 22.3 illustrates the concept of loop tiling for accessing elements in a two-

dimensional array. In a regular for loop, we iterate over columns and rows one

element at a time, whereas in loop tiling, we subdivide the array into smaller tiles.

Figure 22.3

Note that in languages such as Python, we don't usually perform loop tiling,

because Python and many other high-level languages do not allow control over

cache memory like lower-level languages such as C and C++ do. These kinds of

optimizations are often handled by underlying libraries like NumPy and PyTorch

when performing operations on large arrays.

Tips: 在 Python 等⾼级语⾔中，通常不进⾏循环分块，因为这些语⾔不提供

对缓存内存的控制，如 C 和 C++ 等底层语⾔。这些优化通常由底层库（如

NumPy 和 PyTorch）在处理⼤型数组时⾃动处理。

Operator Fusion
Operator fusion, sometimes called loop fusion, is an optimization technique that

combines multiple loops into a single loop. This is illustrated in Figure 22.4, the

product of an array of numbers are fused into a single loop.

Tips: 算⼦融合，也被称为 循环融合 ，将多个循环合并成⼀个循环。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 178 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 22.4

Operator fusion can improve the performance of a model by reducing the

overhead of loop control, decreasing memory access times by improving cache

performance, and possibly enabling further optimizations through vectorization.

You might think this behavior of vectorization would be incompatible with

loop tiling , in which we break a for loop into multiple loops.

Tips: 算⼦融合，可以提⾼模型性能，通过减少循环控制的开销，提⾼缓存

性能，并可能通过向量化进⼀步优化。

However, these techniques are actually complementary, used for different

optimizations, and applicable in different situations. Operator fusion is about

reducing the total number of loop iterations and improving data locality when the

entire data fits into cache. Loop tiling is about improving cache utilization

when dealing with larger multidimensional arrays that do not fit into cache.

Related to operator fusion is the concept of reparameterization, which can often

also be used to simplify multiple operations into one. Popular examples include

training a network with multibranch architectures that are reparameterized into

single-stream architectures during inference. This reparameterization approach

differs from traditional operator fusion in that it does not merge multiple

operations into a single operation. Instead, it rearranges the operations in the

network to create a more efficient architecture for inference. In the so-called

RepVGG architecture, for example, each branch during training consists of a series

of convolutions. Once training is complete, the model is reparameterized into a

single sequence of convolutions.

Tips: 重参数化，也被称为 重参数化优化 ，将多个操作合并成⼀个操作。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 179 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Quantization
Quantization reduces the computational and storage requirements of machine

learning models, particularly deep neural networks. This technique involves

converting the floating-point numbers (technically discrete but representing

continuous values within a specific range) for implementing weights and biases in

a trained neural network to more discrete, lower-precision representations such

as integers. Using less precision reduces the model size and makes it quicker to

execute, which can lead to significant improvements in speed and hardware

efficiency during inference.

Tips: 量化，也被称为 量化优化 ，将浮点数转换为整数，减少模型⼤⼩和计

算量，提⾼推理速度。

In the realm of deep learning, it has become increasingly common to quantize

trained models down to 8-bit and 4-bit integers. These techniques are especially

prevalent in the deployment of large language models.

There are two main categories of quantization. In post-training quantization, the

model is first trained normally with full-precision weights, which are then

quantized after training. Quantization-aware training, on the other hand,

introduces the quantization step during the training process. This allows the

model to learn to compensate for the effects of quantization, which can help

maintain the model's accuracy.

Tips: 量化，⼀般分为 2 ⼤类： 后训练量化 、 量化感知训练 。

后训练量化，在训练完成后，对模型进⾏量化。

量化感知训练，在训练过程中，引⼊量化步骤，让模型学习量化带来的

影响。

However, it's important to note that quantization can occasionally lead to a

reduction in model accuracy. Since this chapter focuses on techniques to speed

up model inference without sacrificing accuracy, quantization is not as good a fit

for this chapter as the previous categories.

Tips: 量化，可能会导致模型精度下降，因此，本章再不讨论量化。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 180 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Other techniques to improve inference speeds include knowledge distillation and

pruning, discussed in Chapter [ch06]. However, these techniques affect the model

architecture, resulting in smaller models, so they are out of scope for this

chapter's question.

Tips: 其他提升推理速度的策略，包括：知识蒸馏、剪枝等，之前章节已经

讨论过;但是，这些策略会影响模型架构，导致模型变⼩，因此，也不在本

章讨论范围内。

Exercises
22-1. Chapter [ch07] covered several multi-GPU training paradigms to speed up

modeltraining.UsingmultipleGPUscan,intheory,alsospeedupmodel inference.

However, in reality, this approach is often not the most efficient or most practical

option. Why is that?

22-2. Vectorization and loop tiling are two strategies for optimizing operations that

involve accessing array elements. What would be the ideal situation in which to

use each?

References
The official BLAS website: https://www.netlib.org/blas/.

The paper that proposed loop tiling: Michael Wolfe, "More Iteration Space

Tiling"? (1989), https://dl.acm.org/doi/abs/10.1145/76263.76337.

RepVGG CNN architecture merging operations in inference mode: Xiaohan

Ding et al., "RepVGG: Making VGG-style ConvNets Great Again"? (2021),

https://arxiv.org/abs/2101.03697.

A new method for quantizing the weights in large language mod- els

downto8-bitintegerrepresentations:TimDettmersetal., "LLM.int8(): 8-bit Matrix

Multiplication for Transformers at Scale"? (2022),

https://arxiv.org/abs/2208.07339.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 181 页，共 239 页

https://www.netlib.org/blas/
https://dl.acm.org/doi/abs/10.1145/76263.76337
https://arxiv.org/abs/2101.03697
https://arxiv.org/abs/2208.07339
https://github.com/ningg/Machine-Learning-Q-and-AI

A new method for quantizing the weights in LLMs farther down to 4-bit

integers: Elias Frantar et al., "GPTQ: Accurate Post-Training Quantization for

Generative Pre-trained Transformers"? (2022),

https://arxiv.org/abs/2210.17323.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 182 页，共 239 页

https://arxiv.org/abs/2210.17323
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 23: Data Distribution Shifts
What are the main types of data distribution shifts we may encounter after

model deployment?

Data distribution shifts are one of the most common problems when putting

machine learning and AI models into production. In short, they refer to the

differences between the distribution of data on which a model was trained and

the distribution of data it encounters in the real world. Often, these changes can

lead to significant drops in model performance because the model's predictions

are no longer accurate.

Tips:数据分布偏移是⽣产环境中使⽤模型时，最常⻅的问题。

指的是，模型在训练时所使⽤的数据分布，与在实际应⽤中遇到的数据

分布之间的差异。

通常，这些变化会导致 模型性能 显著下降，因为模型的预测不再准确。

There are several types of distribution shifts, some of which are more problematic

than others. The most common are covariate shift, concept drift, label shift, and

domain shift; all discussed in more detail in the following sections.

Tips:

数据分布偏移，有多种类型，其中最常⻅的是：协变量偏移、概念漂

移、标签偏移和域偏移。

这些偏移类型，将在后续章节中详细讨论。

Covariate Shift
Suppose describes the distribution of the input data (for instance, the

features), refers to the distribution of the target variable (or class label

distribution), and is the distribution of the targets given the inputs .

Covariate shift happens when the distribution of the input data, , changes,

but the conditional distribution of the output given the input, , remains

the same.

p(x)
p(y)

p(y∣x) y x

p(x)
p(y∣x)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 183 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Tips:

协变量偏移，指的是，输⼊数据分布 发⽣变化，但输出条件分布

 保持不变。

协变量 covariate，⼀般是指 特征变量，通常会影响输出结果，但并不⼀

定是主要因素.

Figure 23.1

For example, suppose we trained a model to predict whether an email is spam

based on specific features. Now, after we embed the email spam filter in an email

client, the email messages that customers receive have drastically different

features. For example, the email messages are much longer and are sent from

someone in a different time zone. However, if the way those features relate to an

email being spam or not doesn't change, then we have a covariate shift.

Covariate shift is a very common challenge when deploying machine learning

models. It means that the data the model receives in a live or production

environment is different from the data on which it was trained. However, because

the relationship between inputs and outputs, , remains the same under

covariate shift, techniques are available to adjust for it.

Tips:

协变量偏移，模型在实际应⽤中遇到的数据分布，与在训练时所使⽤的

数据分布不同。

但是，由于输⼊和输出之间的关系 保持不变，因此有调整⽅

法，例如：对抗验证、重要性加权等。

A common technique to detect covariate shift is adversarial validation, which is

covered in more detail in Chapter [ch29]. Once covariate shift is detected, a

common method to deal with it is importance weighting, which assigns different

p(x)
p(y∣x)

p(y∣x)

p(y∣x)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 184 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

weights to the training example to emphasize or de-emphasize certain instances

during training. Essentially, instances that are more likely to appear in the test

distribution are given more weight, while instances that are less likely to occur are

given less weight. This approach allows the model to focus more on the instances

representative of the test data during training, making it more robust to covariate

shift.

Label Shift
Label shift, sometimes referred to as prior probability shift, occurs when the class

label distribution changes, but the class-conditional distribution

remains unchanged. In other words, there is a significant change in the label

distribution or target variable.

Tips:

标签偏移，指的是，标签分布 发⽣变化，但条件分布 保持

不变。

标签偏移，通常与⽬标变量（或类标签分布）的变化有关。

As an example of such a scenario, suppose we trained an email spam classifier on

a balanced training dataset with 50 percent spam and 50 percent non-spam email.

In contrast, in the real world, only 10 percent of email messages are spam.

A common way to address label shifts is to update the model using the weighted

loss function , especially when we have an idea of the new distribution of the

labels. This is essentially a form of importance weighting. By adjusting the

weights in the loss function according to the new label distribution, we are

incentivizing the model to pay more attention to certain classes that have become

more common (or less common) in the new data. This helps align the model's

predictions more closely with the current reality, improving its performance on

the new data.

Tips: 损失函数加权，突出重要样本分类。

Concept Drift

p(y) p(y∣x)

p(y) p(y∣x)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 185 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Concept drift refers to the change in the mapping between the input features and

the target variable. In other words, concept drift is typically associated with

changes in the conditional distribution , such as the relationship between

the inputs and the output .

Tips:

概念漂移，指的是，输⼊特征与⽬标变量之间的映射关系发⽣变化。

概念漂移，通常与条件分布 的变化有关。

Using the example of the spam email classifier from the previous section, the

features of the email messages might remain the same, but how those features

relate to whether an email is spam might change. This could be due to a new

spamming strategy that wasn't present in the training data. Concept drift can be

much harder to deal with than the other distribution shifts discussed so far since

it requires continuous monitoring and potential model retraining.

Domain Shift
The terms domain shift and concept drift are used somewhat inconsistently across

the literature and are sometimes taken to be interchangeable. In reality, the two

are related but slightly different phenomena. Concept drift refers to a change in

the function that maps from the inputs to the outputs, specifically to situations

where the relationship between features and target variables changes as more

data is collected over time.

Tips:

领域偏移，通常跟概念漂移有差异。

领域偏移，指的是，输⼊数据分布 和输出条件分布 都发⽣

变化。

领域偏移，也被称为联合分布偏移，因为联合分布 是输⼊和输

出分布的乘积。

In domain shift, the distribution of inputs, , and the conditional distribution

of outputs given inputs, , both change. This is sometimes also called joint

distribution shift due to the joint distribution:

p(y∣x)
x y

p(y∣x)

p(x) p(y∣x)

p(x, y)

p(x)
p(y∣x)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 186 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

We can thus think of domain shift as a combination of both covariate shift and

concept drift. In addition, since we can obtain the marginal distribution by

integrating over the joint distribution over the variable (mathematically

expressed as), covariate drift and concept shift also imply

label shift. (However, exceptions may exist where the change in

compensates for the change in such that may not change.)

Conversely, label shift and concept drift usually also imply covariate shift.

To return once more to the example of email spam classification, domain shift

would mean that the features (content and structure of email) and the

relationship between the features and target both change over time. For instance,

spam email in 2023 might have different features (new types of phishing schemes,

new language, and so forth), and the definition of what constitutes spam might

have changed as well. This type of shift would be the most challenging scenario

for a spam filter trained on 2020 data, as it would have to adjust to changes in

both the input data and the target concept.

Domain shift is perhaps the most difficult type of shift to handle, but monitoring

model performance and data statistics over time can help detect domain shifts

early. Once they are detected, mitigation strategies include collecting more

labeled data from the target domain and retraining or adapting the model.

Types of Data Distribution Shifts

Figure 23.2

As noted in the previous sections, some types of distribution shift are more

problematic than others. The least problematic among them is typically

p(x, y) = p(y∣x) ⋅ p(x)

p(y)
p(x, y) x

p(y) = p(x, y) dx∫
p(x)

p(y∣x) p(y)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 187 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

covariate shift . Here, the distribution of the input features, , changes

between the training and testing data, but the conditional distribution of the

output given the inputs, , remains constant. Since the underlying

relationship between the inputs and outputs remains the same, the model trained

on the training data can still apply, in principle, to the testing data and new data.

The most problematic type of distribution shift is typically joint distribution

shift , where both the input distribution and the conditional output

distribution change. This makes it particularly difficult for a model to

adjust, as the learned relationship from the training data may no longer hold. The

model has to cope with both new input patterns and new rules for making

predictions based on those patterns.

However, the "severity"? of a shift can vary widely depending on the real-world

context. For example, even a covariate shift can be extremely problematic if the

shift is severe or if the model cannot adapt to the new input distribution. On the

other hand, a joint distribution shift might be manageable if the shift is relatively

minor or if we have access to a sufficient amount of labeled data from the new

distribution to retrain our model.

In general, it's crucial to monitor our models' performance and be aware of

potential shifts in the data distribution so that we can take appropriate action if

necessary.

Tips: 监控模型性能，及时发现潜在 数据分布偏移 ，⾮常重要。

Exercises
23-1. What is the big issue with importance weighting as a technique to mitigate

covariate shift?

23-2. How can we detect these types of shifts in real-world scenarios, especially

when we do not have access to labels for the new data?

References

p(x)

p(y∣x)

p(x)
p(y∣x)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 188 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Recommendations and pointers to advanced mitigation techniques for

avoiding domain shift: Abolfazl Farahani et al., "A Brief Review of Domain

Adaptation"? (2020), https://arxiv.org/abs/2010.03978.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 189 页，共 239 页

https://arxiv.org/abs/2010.03978
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 24: Poisson and Ordinal
Regression
When is it preferable to use Poisson regression over Ordinal

regression , and vice versa?

本章讨论了两种回归模型：泊松回归和序数回归，并讨论了它们的应⽤场

景。

泊松回归⽤于计数数据，序数回归⽤于有序数据。

We usually use Poisson regression when the target variable represents count

data (positive integers). As an example of count data, consider the number of

colds contracted on an airplane or the number of guests visiting a restaurant on a

given day. Besides the target variable representing counts, the data should also be

Poisson distributed, which means that the mean and variance are roughly the

same. (For large means, we can use a normal distribution to approximate a

Poisson distribution.)

泊松回归通常⽤于表示计数数据（正整数）的⽬标变量。例如，考虑⻜机上

感冒的⼈数或某天餐厅的客⼈数量。除了表示计数的⽬标变量外，数据还应

服从泊松分布，这意味着均值和⽅差⼤致相同。（对于⼤均值，我们可以使

⽤正态分布来近似泊松分布。）

更多细节： 泊松分布

Ordinal data is a subcategory of categorical data where the categories have a

natural order, such as 1 < 2 < 3, as illustrated in Figure 24.1. Ordinal data is often

represented as positive integers and may look similar to count

data.Forexample,considerthestarratingonAmazon(1star,2stars,3stars, and so on).

However, ordinal regression does not make any assumptions about the distance

between the ordered categories. Consider the following measure of disease

severity: severe > moderate > mild > none. While we would typically map the

disease severity variable to an integer representation (4 > 3 > 2 > 1), there is no

assumption that the distance between 4 and 3 (severe and moderate) is the same

as the distance between 2 and 1 (mild and none).

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 190 页，共 239 页

https://baike.baidu.com/item/%E6%B3%8A%E6%9D%BE%E5%88%86%E5%B8%83/1442110
https://github.com/ningg/Machine-Learning-Q-and-AI

序数数据是分类数据的⼀个⼦类别，其中类别具有⾃然顺序，例如 1 < 2 <

3，如图 1.1 所示。序数数据通常表示为正整数，可能与计数数据相似。例

如，考虑亚⻢逊上的星级评分（1 星、2 星、3 星等）。然⽽，序数回归对有

序类别之间的距离没有任何假设。考虑以下疾病严重程度的衡量标准：严重

> 中等 > 轻微 > ⽆。虽然我们通常将疾病严重程度变量映射为整数表示（4 >

3 > 2 > 1），但没有任何假设认为 4 和 3（严重和中等）之间的距离与 2 和 1

（轻微和⽆）之间的距离相同。

Figure 24.1

In short, we use Poisson regression for count data. We use Ordinal regression

when we know that certain outcomes are "higher" or "lower" than others, but we

are not sure how much or if it even matters.

Exercises
24-1. Suppose we want to predict the number of goals a soccer player will score in

a particular season. Should we solve this problem using ordinal regression or

Poisson regression?

24-2. Suppose we ask someone to sort the last three movies they have watched

based on their order of preference. Ignoring the fact that this dataset is a tad too

small for machine learning, which approach would be best suited for this kind of

data?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 191 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 25: Confidence Intervals
What are the different ways to construct confidence intervals for machine

learning classifiers?

There are several ways to construct confidence intervals for machine

learning models, depending on the model type and the nature of your data. For

instance, some methods are computationally expensive when working with deep

neural networks and are thus more suitable to less resource-intensive machine

learning models. Others require larger datasets to be reliable.

The following are the most common methods for constructing confidence

intervals:

Constructing normal approximation intervals based on a test set

Bootstrapping training sets

Bootstrapping the test set predictions

Confidence intervals from retraining models with different random seeds

Before reviewing these in greater depth, let's briefly review the definition and

interpretation of confidence intervals.

Defining Confidence Intervals
A confidence interval is a type of method to estimate an unknown

population parameter. A population parameter is a specific measure of a

statistical population, for example, a mean (average) value or proportion. By

"specific"? measure, I mean there is a single, exact value for that parameter for

the entire population. Even though this value may not be known and often needs

to be estimated from a sample, it is a fixed and definite characteristic of the

population. A statistical population, in turn, is the complete set of items or

individuals we study.

置信区间，通常⽤于估计总体参数的精确度。它提供了⼀个范围，在这个范

围内，我们可以对总体参数的值有较⾼的信⼼。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 192 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

统计学中，总体参数是指描述总体分布特征的数值，例如总体均值、总体⽅

差等。

总体参数是固定的、确定的，但通常⽆法直接观测到，需要通过样本数据进

⾏估计。

In a machine learning context, the population could be considered the entire

possible set of instances or data points that the model may encounter, and the

parameter we are often most interested in is the true generalization accuracy of

our model on this population.

The accuracy we measure on the test set estimates the true generalization

accuracy. However, it's subject to random error due to the specific sample of test

instances we happened to use. This is where the concept of a confidence interval

comes in. A 95 percent confidence interval for the generalization accuracy gives us

a range in which we can be reasonably sure that the true generalization accuracy

lies.

For instance, if we take 100 different data samples and compute a 95 percent

confidence interval for each sample, approximately 95 of the 100 confidence

intervals will contain the true population value (such as the generalization

accuracy), as illustrated in Figure 25.1.

Figure 25.1

More concretely, if we were to draw 100 different representative test sets from the

population (for instance, the entire possible set of instances that the model may

encounter) and compute the 95 percent confidence interval for the generalization

accuracy from each test set, we would expect about 95 of these intervals to

contain the true generalization accuracy.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 193 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

We can display confidence intervals in several ways. It is common to use a bar

plot representation where the top of the bar represents the parameter value (for

example, model accuracy) and the whiskers denote the upper andlower levels of

the confidence interval (left chart of Figure 25.2). Alternatively, the confidence

intervals can be shown without bars, as in the right chart of Figure 25.2.

图 1.1 展示了置信区间的两种常⻅表示⽅式。左图使⽤条形图表示，条形的

⾼度表示参数值（例如模型准确率），⽽须状物则表示置信区间的上下界。

右图则不使⽤条形，直接显示置信区间的上下界。

Figure 25.2

This visualization is functionally useful in a number of ways. For instance, when

confidence intervals for two model performances do not overlap, it's a strong

visual indicator that the performances are significantly different. Take the example

of statistical significance tests, such as t-tests: if two 95 percent confidence

intervals do not overlap, it strongly suggests that the difference between the two

measurements is statistically significant at the 0.05 level.

如果两个模型的置信区间没有重叠，则表明两个模型的性能存在显著差异。

例如，假设我们有两个模型，它们的置信区间分别为 [0.85, 0.95] 和 [0.80,

0.90]。由于这两个区间没有重叠，我们可以认为这两个模型的性能存在显著

差异。

On the other hand, if two 95 percent confidence intervals overlap, we cannot

automatically conclude that there's no significant difference between the two

measurements. Even when confidence intervals overlap, there can still be a

statistically significant difference.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 194 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

如果两个模型的置信区间重叠，则不能⾃动得出两个测量值之间没有显著差

异的结论。即使置信区间重叠，仍然可能存在统计显著差异。

Alternatively, to provide more detailed information about the exact quantities, we

can use a table view to express the confidence intervals. The two common

notations are summarized in Table 1.1.

Confidence Intervals

模型编号 置信区间（±表示法） 置信区间（下限, 上限）

1 89.1% ± 1.7% 89.1% (87.4%, 90.8%)

2 79.5% ± 2.2% 79.5% (77.3%, 81.7%)

3 95.2% ± 1.6% 95.2% (93.6%, 96.8%)

The notation is often preferred if the confidence interval is symmetric, meaning

the upper and lower endpoints are equidistant from the estimated parameter.

Alternatively, the lower and upper confidence intervals can be written explicitly.

 符号常⽤于表示置信区间，尤其是在置信区间是对称的情况下

The Methods
The following sections describe the four most common methods of constructing

confidence intervals.

Method 1: Normal Approximation Intervals

The normal approximation interval involves generating the confidence interval

from a single train-test split. It is often considered the simplest and most

traditional method for computing confidence intervals. This approach is especially

appealing in the realm of deep learning, where training models is computationally

costly. It's also desirable when we are interested in evaluating a specific model,

instead of models trained on various data partitions like in k-fold cross-validation.

How does it work? In short, the formula for calculating the confidence interval for

a predicted parameter (for example, the sample mean, denoted as), assuming a

±

±

x̄

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 195 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

normal distribution, is expressed as .

In this formula, z represents the z-score, which indicates a particular value's

number of standard deviations from the mean in a standard normal distribution.

SE represents the standard error of the predicted parameter (in this case, the

sample mean).

Most readers will be familiar with z-score tables that are usually found in the

back of introductory statistics textbooks. However, a more convenient and

preferred way to obtain z-scores is to use functions like SciPy's

stats.zscore function, which computes the z-scores for given confidence

levels.

For our scenario, the sample mean, denoted as , corresponds to the test set

accuracy, ，a measure of successful predictions in the context of a

binomial proportion confidence interval.

The standard error can be calculated under a normal approximation as follows:

In this equation, signifies the size of the test set. Substituting the standard error

back into the previous formula, we obtain the following:

Additional code examples to implement this method can also be found in the

supplementary/q25_confidence-intervals subfolder in the supplementary code

repository at https://github.com/rasbt/MachineLearning-QandAI-book. While the

normal approximation interval method is very popular due to its simplicity, it has

some downsides. First, the normal approximation may not always be accurate,

especially for small sample sizes or for data that is not normally distributed. In

such cases, other methods of computing confidence intervals may be more

accurate. Second, using a single train-test split does not provide information

about the variability of the model performance across different splits of the data.

This can be an issue if the performance is highly dependent on the specific split

used, which may be the case if the dataset is small or if there is a high degree of

variability in the data.

±x̄ z × SE

x̄

ACC test

SE = ACC 1 − ACC

n

1
test (test)

n

ACC ±test z ACC 1 − ACC

n

1
test (test)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 196 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

Method 2: Bootstrapping Training Sets

Confidence intervals serve as a tool for approximating unknown parameters.

However, when we are restricted to just one estimate, such as the accuracy

derived from a single test set, we must make certain assumptions to make this

work. For example, when we used the normal approximation interval described in

the previous section, we assumed normally distributed data, which may or may

not hold.

In a perfect scenario, we would have more insight into our test set sample

distribution. However, this would require access to many independent test

datasets, which is typically not feasible. A workaround is the bootstrap method,

which resamples existing data to estimate the sampling distribution.

In practice, when the test set is large enough, the normal distribution

approximation will hold, thanks to the central limit theorem. This theorem states

that the sum (or average) of a large number of independent, identically

distributed random variables will approach a normal distribution, regardless of

the underlying distribution of the individual variables. It is difficult to specify what

constitutes a large-enough test set. However, under stronger assumptions than

those of the central limit theorem, we can at least estimate the rate of

convergence to the normal distribution using the Berry""Esseen theorem, which

gives a more quantitative estimate of how quickly the convergence in the central

limit theorem occurs.

In a machine learning context, we can take the original dataset and draw a

random sample with replacement. If the dataset has size and we draw a

random sample with replacement of size , this implies that some data points will

likely be duplicated in this new sample, whereas other data points are not

sampled at all.We can then repeat this procedure for multiple rounds to obtain

multiple training and test sets. This process is known as out-of-bag bootstrapping,

illustrated in Figure 25.4.

n

n

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 197 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 25.4

Suppose we constructed k training and test sets. We can now take each of these

splits to train and evaluate the model to obtain k test set accuracy estimates.

Considering this distribution of test set accuracy estimates, we can take the range

between the 2.5th and 97.5th percentile to obtain the 95 percent confidence

interval, as illustrated in Figure 25.5.

Figure 25.5

Unlike the normal approximation interval method, we can consider this out-of-bag

bootstrap approach to be more agnostic to the specific distribution. Ideally, if the

assumptions for the normal approximation are satisfied, both methodologies

would yield identical outcomes.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 198 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Since bootstrapping relies on resampling the existing test data, its downside is

that it doesn't bring in any new information that could be available in a broader

population or unseen data. Therefore, it may not always be able to generalize the

performance of the model to new, unseen data.

Note that we are using the bootstrap sampling approach in this chapter instead of

obtaining the train-test splits via k-fold cross-validation, because of the

bootstrap's theoretical grounding via the central limit theorem discussed earlier.

There are also more advanced out-of-bag bootstrap methods, such as the .632

and .632+ estimates, which are reweighting the accuracy estimates.

Method 3: Bootstrapping Test Set Predictions

An alternative approach to bootstrapping training sets is to bootstrap test sets.The

idea is to train the model on the existing training set as usual and then to evaluate

the model on bootstrapped test sets, as illustrated in Figure 25.6. After obtaining

the test set performance estimates, we can then apply the percentile method

described in the previous section.

Figure 25.6

Contrary to the prior bootstrap technique, this method uses a trained model and

simply resamples the test set (instead of the training sets). This approach is

especially appealing for evaluating deep neural networks, as it doesn't require

retraining the model on the new data splits. However, a disadvantage of this

approach is that it doesn't assess the model's variability toward small changes in

the training data.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 199 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Method 4: Retraining Models with Different
Random Seeds

In deep learning, models are commonly retrained using various random seeds

since some random weight initializations may lead to much better models than

others. How can we build a confidence interval from these experiments? If we

assume that the sample means follow a normal distribution, we can employ a

previously discussed method where we calculate the confidence interval around a

sample mean, denoted as , as follows:

Since in this context we often work with a relatively modest number of samples

(for instance, models from 5 to 10 random seeds), assuming a distribution is

deemed more suitable than a normal distribution. Therefore, we substitute the

value with a value in the preceding formula. (As the sample size increases, the

distribution tends to look more like the standard normal distribution, and the

critical values [and] become increasingly similar.)

Furthermore, if we are interested in the average accuracy, denoted as ,

we consider corresponding to a unique random seed as a sample.

The number of random seeds we evaluate would then constitute the sample size

. As such, we would calculate:

Here, is the standard error, calculated as , while

is the average accuracy, which we compute over the random seeds. The

standard deviation is calculated as follows:

To summarize, calculating the confidence intervals using various random seeds is

another effective alternative. However, it is primarily beneficial for deep learning

models. It proves to be costlier than both the normal approximation approach

x̄

±x̄ z ⋅ SE

t

z

t t

z t

 ACCtest

ACC test, j j

n

 ±ACCtest t ⋅ SE

SE SE = SD/ n

 =ACCtest ACC

r

1

j=1

∑
r

test, j

r

SD

SD =

r − 1

 ACC −∑j=1
r (test, j ACCtest)

2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 200 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

(method 1) and bootstrapping the test set (method 3), as it necessitates retraining

the model. On the bright side, the outcomes derived from disparate random seeds

provide us with a robust understanding of the model's stability.

Recommendations
Each possible method for constructing confidence intervals has its unique

advantages and disadvantages. The normal approximation interval is cheap to

compute but relies on the normality assumption about the distribution. The out-

of-bag bootstrap is agnostic to these assumptions but is substantially more

expensive to compute. A cheaper alternative is bootstrapping the test only, but

this involves bootstrapping a smaller dataset and may be misleading for small or

nonrepresentative test set sizes. Lastly, constructing confidence intervals from

different random seeds is expensive but can give us additional insights into the

model's stability.

Exercises
25-1. As mentioned earlier, the most common choice of confidence level is 95

percent confidence intervals. However, 90 percent and 99 percent are also

common. Are 90 percent confidence intervals smaller or wider than 95 percent

confidence intervals, and why is this the case?

25-2. In ""? on page , we created test sets by bootstrapping and then applied the

already trained model to compute the test set accuracy on each of these datasets.

Can you think of a method or modification to obtain these test accuracies more

efficiently?

References
A detailed discussion of the pitfalls of concluding statistical significance from

nonoverlapping confidence intervals: Martin Krzywinski and Naomi Altman,

"Error Bars"? (2013), https://www.nature.com/articles/nmeth.2659.

A more detailed explanation of the binomial proportion confidence interval:

https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 201 页，共 239 页

https://www.nature.com/articles/nmeth.2659
https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
https://github.com/ningg/Machine-Learning-Q-and-AI

For a detailed explanation of normal approximation intervals, see Section 1.7

of my article: "Model Evaluation, Model Selection, and Algorithm Selection in

Machine Learning"? (2018), https://arxiv.org/abs/1811.12808.

Additional information on the central limit theorem for inde- pendent and

identically distributed random variables:

https://en.wikipedia.org/wiki/Central_limit_theorem.

For more on the Berry""Esseen theorem:

https://en.wikipedia.org/wiki/Berry""Esseen_theorem.

The .632 bootstrap addresses a pessimistic bias of the regular out-of-bag

bootstrapping approach: Bradley Efron, "Estimating the Error Rate of a

Prediction Rule: Improvement on Cross-Validation"? (1983),

https://www.jstor.org/stable/2288636.

The .632+ bootstrap corrects an optimistic bias introduced in the .632

bootstrap: Bradley Efron and Robert Tibshirani, "Improvements on Cross-

Validation: The .632+ Bootstrap Method"? (1997),

https://www.jstor.org/stable/2965703.

A deep learning research paper that discusses bootstrapping the test set

predictions: Benjamin Sanchez-Lengeling et al., "Machine Learning for Scent:

Learning Generalizable Perceptual Representations of Small Molecules"?

(2019), https://arxiv.org/abs/1910.10685.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 202 页，共 239 页

https://arxiv.org/abs/1811.12808
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Berry%C3%A2%C2%80%C2%93Esseen_theorem
https://www.jstor.org/stable/2288636
https://www.jstor.org/stable/2965703
https://arxiv.org/abs/1910.10685
https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 26: Confidence Intervals vs.
Conformal Predictions
{#chapter-26-confidence-intervals-vs-conformal-predictions}

What are the differences between confidence intervals and conformal

predictions, and when do we use one over the other?

Confidence intervals and conformal predictions are both statistical methods to

estimate the range of plausible values for an unknown population parameter. As

discussed in Chapter [ch25], a confidence interval quantifies the level of

confidence that a population parameter lies within an interval. For instance, a 95

percent confidence interval for the mean of a population means that if we were to

take many samples from the population and calculate the 95 percent confidence

interval for each sample, we would expect the true population mean (average) to

lie within these intervals 95 percent of the time. Chapter [ch25] covered several

techniques for applying this method to estimate the prediction performance of

machine learning models. Conformal predictions, on the other hand, are

commonly used for creating prediction intervals, which are designed to cover a

true outcome with a certain probability.

This chapter briefly explains what a prediction interval is and how it differs from

confidence intervals, and then it explains how conformal predictions are, loosely

speaking, a method for constructing prediction intervals.

Confidence Intervals and Prediction
Intervals
Whereas a confidence interval focuses on parameters that characterize a

population as a whole, a prediction interval provides a range of values for a single

predicted target value. For example, consider the problem of predicting people's

heights. Given a sample of 10,000 people from the population, we might conclude

that the mean (average) height is 5 feet, 7 inches. We might also calculate a 95

percent confidence interval for this mean, ranging from 5 feet, 6 inches to 5 feet, 8

inches.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 203 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

A prediction interval, however, is concerned with estimating not the height of the

population but the height of an individual person. For example, given a weight of

185 pounds, a given person's prediction interval may fall between 5 feet 8 inches

and 6 feet.

In a machine learning model context, we can use confidence intervals to estimate

a population parameter such as the accuracy of a model (which refers to the

performance on all possible prediction scenarios). In contrast, a prediction

interval estimates the range of output values for a single given input example.

Prediction Intervals and Conformal
Predictions
Both conformal predictions and prediction intervals are statistical techniques that

estimate uncertainty for individual model predictions, but they do so in different

ways and under different assumptions.

While prediction intervals often assume a particular data distribution and are tied

to a specific type of model, conformal prediction methods are distribution free

and can be applied to any machine learning algorithm.

In short, we can think of conformal predictions as a more flexible and

generalizable form of prediction intervals. However, conformal predictions often

require more computational resources than traditional methods for constructing

prediction intervals, which involve resampling or permutation techniques.

Prediction Regions, Intervals, and Sets
In the context of conformal prediction, the terms prediction interval, prediction

set, and prediction region are used to denote the plausible outputs for a given

instance. The type of term used depends on the nature of the task.

In regression tasks where the output is a continuous variable, a prediction interval

provides a range within which the true value is expected to fall with a certain level

of confidence. For example, a model might predict that the price of a house is

between $200,000 and $250,000.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 204 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In classification tasks, where the output is a discrete variable (the class labels), a

prediction set includes all class labels that are considered plausible predictions

for a given instance. For example, a model might predict that an image depicts

either a cat, dog, or bird.

Prediction region is a more general term that can refer to either a prediction

interval or a prediction set. It describes the set of outputs considered plausible by

the model.

Computing Conformal Predictions
Now that we've introduced the difference between confidence intervals and

prediction regions and learned how conformal prediction methods are related to

prediction intervals, how exactly do conformal predictions work?

In short, conformal prediction methods provide a framework for creating

prediction regions, sets of potential outcomes for a prediction task. Given the

assumptions and methods used to construct them, these regions are designed to

contain the true outcome with a certain probability.

For classifiers, a prediction region for a given input is a set of labels such that the

set contains the true label with a given confidence (typically 95 percent), as

illustrated in Figure 26.1.

Figure 26.1

As depicted in Figure 26.1, the ImageNet dataset consists of a subset of bird

species. Some bird species in ImageNet belong to one of the follow- ing classes:

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 205 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

hawk, duck, eagle, or goose. ImageNet also contains other animals, for example,

cats. For a new image to classify (here, an eagle), the conformal prediction set

consists of classes such that the true label, eagle, is contained within this set with

95 percent probability. Often, this includes closely related classes, such as hawk

and goose in this case. However, the prediction set can also include less closely

related class labels, such as cat.

To sketch the concept of computing prediction regions step by step, let's suppose

we train a machine learning classifier for images. Before the modelis trained, the

dataset is typically split into three parts: a training set, a calibration set, and a test

set. We use the training set to train the model and the calibration set to obtain the

parameters for the conformal prediction regions. We can then use the test set to

assess the performance of the conformal predictor. A typical split ratio might be

60 percent training data, 20 percent calibration data, and 20 percent test data.

The first step after training the model on the training set is to define a

nonconformity measure, a function that assigns a numeric score to each instance

in the calibration set based on how "unusual"? it is. This could be based on the

distance to the classifier's decision boundary or, more commonly, 1 minus the

predicted probability of a class label. The higher the score is, the more unusual

the instance is.

Before using conformal predictions for new data points, we use the nonconformity

scores from the calibration set to compute a quantile threshold. This threshold is

a probability level such that, for example, 95 percent of the instances in the

calibration set (if we choose a 95 percent confidence level) have nonconformity

scores below this threshold. This threshold is then used to determine the

prediction regions for new instances, ensuring that the predictions are calibrated

to the desired confidence level.

Once we have the threshold value, we can compute prediction regions for new

data. Here, for each possible class label (each possible output of your classifier)

for a given instance, we check whether its nonconformity score is below the

threshold. If it is, then we include it in the prediction set for that instance.

A Conformal Prediction Example

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 206 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Let's illustrate this process of making conformal predictions with an example

using a simple conformal prediction method known as the score method.

Suppose we train a classifier on a training set to distinguish between three

species of birds: sparrows, robins, and hawks. Suppose the predicted probabilities

for a calibration dataset are as follows:

Sparrow [0.95, 0.9, 0.85, 0.8, 0.75]

Robin [0.7, 0.65, 0.6, 0.55, 0.5]

Hawk [0.4, 0.35, 0.3, 0.25, 0.2]

As depicted here, we have a calibration set consisting of 15 examples, five for each

of the three classes. Note that a classifier returns three probability scores for each

training example: one probability corresponding to each of the three classes

(Sparrow, Robin, and Hawk). Here, however, we've selected only the probability

for the true class label. For example, we may obtain the values [0.95, 0.02, 0.03]

for the first calibration example with the true label Sparrow. In this case, we kept

only 0.95.

Next, after we obtain the previous probability scores, we can compute the

nonconformity score as 1 minus the probability, as follows:

Sparrow [0.05, 0.1, 0.15, 0.2, 0.25]

Robin [0.3, 0.35, 0.4, 0.45, 0.5]

Hawk [0.6, 0.65, 0.7, 0.75, 0.8]

Considering a confidence level of 0.95, we now select a threshold such that 95

percent of these nonconformity scores fall below that threshold. Based on the

nonconformity scores in this example, this threshold is 0.8. We can then use this

threshold to construct the prediction sets for new instances we want to classify.

Now suppose we have a new instance (a new image of a bird) that we want to

classify. We calculate the nonconformity score of this new bird image, assuming it

belongs to each bird species (class label) in the training set:

Sparrow 0.26

Robin 0.45

Hawk 0.9

In this case, the Sparrow and Robin nonconformity scores fall below the threshold

of 0.8. Thus, the prediction set for this input is [Sparrow, Robin]. In other words,

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 207 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

this tells us that, on average, the true class label is included in the prediction set

95 percent of the time.

A hands-on code example implementing the score method can be found in the

supplementary/q26_conformal-prediction subfolder at

https://github.com/rasbt/MachineLearning-QandAI-book.

The Benefits of Conformal Predictions
In contrast to using class-membership probabilities returned from classifiers, the

major benefits of conformal prediction are its theoretical guarantees and its

generality. Conformal prediction methods don't make any strong assumptions

about the distribution of the data or the model being used, and they can be

applied in conjunction with any existing machine learning algorithm to provide

confidence measures for predictions.

Confidence intervals have asymptotic coverage guarantees, which means that the

coverage guarantee holds in the limit as the sample (test set) size goes to infinity.

This doesn't necessarily mean that confidence intervals work for only very large

sample sizes, but rather that their properties are more firmly guaranteed as the

sample size increases. Confidence intervals therefore rely on asymptotic

properties, meaning that their guarantees become more robust as the sample size

grows.

In contrast, conformal predictions provide finite-sample guarantees, ensuring that

the coverage probability is achieved for any sample size. For example, if we

specify a 95 percent confidence level for a conformal prediction method and

generate 100 calibration sets with corresponding prediction sets, the method will

include the true class label for 95 out of the 100 test points. This holds regardless

of the size of the calibration sets.

While conformal prediction has many advantages, it does not always provide the

tightest possible prediction intervals. Sometimes, if the underlying assumptions of

a specific classifier hold, that classifier's own probability estimates might offer

tighter and more informative intervals.

Recommendations

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 208 页，共 239 页

https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

A confidence interval tells us about our level of uncertainty about the model's

properties, such as the prediction accuracy of a classifier. A prediction interval or

conformal prediction output tells us about the level of uncertainty in a specific

prediction from the model. Both are very important in understanding the

reliability and performance of our model, but they provide different types of

information.

For example, a confidence interval for the prediction accuracy of a model can be

helpful for comparing and evaluating models and for deciding which model to

deploy. On the other hand, a prediction interval can be helpful for using a model

in practice and understanding its predictions. For instance, it can help identify

cases where the model is unsure and may need additional data, human oversight,

or a different approach.

Exercises
26-1. Prediction set sizes can vary between instances. For example, we may

encounter a prediction set size of 1 for a given instance and for another, a set size

of 3. What does the prediction set size tell us?

26-2. Chapters [ch25] and [ch26] focused on classification methods. Could we use

conformal prediction and confidence intervals for regression too?

References
MAPIE is a popular library for conformal predictions in Python:

https://mapie.readthedocs.io/.

For more on the score method used in this chapter: Christoph Molnar,

Introduction to Conformal Prediction with Python (2023),

https://christophmolnar.com/books/conformal-prediction/.

In addition to the score method, several other variants of confor- mal

prediction methods exist. For a comprehensive collection of conformal

prediction literature and resources, see the Awesome Conformal Prediction

page: https://github.com/valeman/awesome-conformal-prediction.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 209 页，共 239 页

https://mapie.readthedocs.io/
https://christophmolnar.com/books/conformal-prediction/
https://github.com/valeman/awesome-conformal-prediction
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 210 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 27: Proper Metrics
What are the three properties of a distance function that make it a proper

metric?

Metrics are foundational to mathematics, computer science, and various other

scientific domains. Understanding the fundamental properties that define a good

distance function to measure distances or differences between points or datasets

is important. For instance, when dealing with functions like loss functions in

neural networks, understanding whether they behave like proper metrics can be

instrumental in knowing how optimization algorithms will converge to a solution.

Tips:

Metrics 度量，是 数学 、 计算机科学 和各种其他科学领域的基础。

理解定义良好的 距离函数 的关键属性，对于测量点或数据集之间的距离

或差异⾄关重要。

例如，在处理神经⽹络中的损失函数时，了解它们是否表现出良好的距

离函数属性，对于了解优化算法如何收敛到解决⽅案⾄关重要。

距离函数 ，具有三个关键属性： ⾮负性 、 对称性 和 三⻆不等式 。

This chapter analyzes two commonly utilized loss functions, the mean squared

error and the cross-entropy loss , to demonstrate whether they meet the

criteria for proper metrics.

Tips: 本章节，分析了两个常⽤的损失函数， 均⽅误差 和 交叉熵损失 ，来演

示它们是否符合良好的度量标准。

The Criteria
To illustrate the criteria of a proper metric, consider two vectors or points and

, and their distance , as shown in Figure 27.1.

v
w d(v,w)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 211 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 27.1

The criteria of a proper metric are the following:

The distance between two points is always non-negative, , and

can be 0 only if the two points are identical, that is, .

The distance is symmetric; for instance, .

The distance function satisfies the triangle inequality for any three points: ,

, , meaning:

Tips: 距离函数，具有三个关键属性： ⾮负性 、 对称性 和 三⻆不等式 。

To better understand the triangle inequality, think of the points as vertices of a

triangle. If we consider any triangle, the sum of two of the sides is always larger

than the third side, as illustrated in Figure 27.2.

Figure 27.2

Consider what would happen if the triangle in equality depicted in Figure 27.2

weren't true. If the sum of the lengths of sides AB and BC was shorter than AC,

then sides AB and BC would not meet to form a triangle; instead, they would fall

d(v,w) ≥ 0
v = w

d(v,w) = d(w,v)

v
w x

d(v,w) ≤ d(v,x) + d(x,w)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 212 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

short of each other. Thus, the fact that they meet and form a triangle

demonstrates the triangle inequality.

The Mean Squared Error
The mean squared error (MSE) loss computes the squared Euclidean

distance between a target variable and a predicted target value :

The index denotes the th data point in the dataset or sample. Is this loss

function a proper metric?

For simplicity's sake, we will consider the squared error (SE) loss between

two data points (though the following insights also hold for the MSE). As shown in

the following equation, the SE loss quantifies the squared difference between the

predicted and actual values for a single data point, while the MSE loss averages

these squared differences over all data points in a dataset:

In this case, the SE satisfies the first part of the first criterion: the distance

between two points is always non-negative . Since we are raising the difference

to the power of 2, it cannot be negative.

How about the second criterion, that the distance can be 0 only if the two points

are identical? Due to the subtraction in the SE, it is intuitive to see that it can be 0

only if the prediction matches the target variable, . As with the first

criterion, we can use the square to confirm that SE satisfies the second criterion:

we have .

At first glance, it seems that the squared error loss also satisfies the third

criterion, the triangle inequality . Intuitively, you can check this by choosing

three arbitrary numbers, here 1, 2, 3:

y ŷ

MSE = y −

n

1

i=1

∑
n

((i) ŷ(i))2

i i

SE(y,) =ŷ y − (ŷ)2

y = ŷ

(y −) =ŷ 2 (−ŷ y)2

(1 − 2) ≤2 (1 − 3) +2 (2 − 3)2

(1 − 3) ≤2 (1 − 2) +2 (2 − 3)2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 213 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

However, there are values for which this is not true. For example, consider the

values , , and . This gives us , , and

, such that we have the following scenario, which violates the triangle

inequality:

Since it does not satisfy the triangle inequality via the example above, we

conclude that the (mean) squared error loss is not a proper metric.

However, if we change the squared error into the root-squared error

the triangle inequality can be satisfied:

You might be familiar with the L2 distance or Euclidean distance, which is

known to satisfy the triangle inequality. These two distance metrics are equivalent

to the root-squared error when considering two scalar values.

Tips:

如果将 平⽅误差 改为 平⽅根误差 ，则三⻆不等式可以满⾜。

平⽅根误差，是平⽅误差的平⽅根。

The Cross-Entropy Loss

Tips: 交叉熵损失，是衡量两个概率分布之间距离的损失函数。

FIXME ??? 不理解

(2 − 3) ≤2 (1 − 2) +2 (1 − 3)2

a = 0 b = 2 c = 1 d(a, b) = 4 d(a, c) = 1
d(b, c) = 1

(0 − 2) ≰2 (0 − 1) +2 (2 − 1)2

(2 − 1) ≤2 (0 − 1) +2 (0 − 2)2

(0 − 1) ≤2 (0 − 2) +2 (1 − 2)2

 (y −)ŷ 2

 ≤(0 − 2)2
 +(0 − 1)2

 (2 − 1)2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 214 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Cross entropy is used to measure the distance between two probability

distributions. In machine learning contexts, we use the discrete cross-entropy loss

(CE) between class label and the predicted probability when we train logistic

regression or neural network classifiers on a dataset consisting of training

examples:

Is this loss function a proper metric? Again, for simplicity's sake, we will look at

the cross-entropy function () between only two data points:

The cross-entropy loss satisfies one part of the first criterion: the distance is

always non-negative because the probability score is a number in the range [0, 1].

Hence, ranges between and 0. The important part is that the

function includes a negative sign. Hence, the cross entropy ranges between and

 and thus satisfies one aspect of the first criterion shown above.

However, the cross-entropy loss is not 0 for two identical points. For example,

.

The second criterion shown above is also violated by the cross-entropy loss

because the loss is not symmetric: . Let's

illustrate this with a concrete, numeric example:

If and , then .

If and , then .

Finally, the cross-entropy loss does not satisfy the triangle inequality,

. Let's illustrate this with an example as well.

Suppose we choose , , and . We have:

As you can see, does not hold here.

y p̂

n

CE(y,p) = − y ×
n

1

i=1

∑
n

(i) log p((i))

H

H(y, p) = −y × log(p)

log(p) −∞ H

0
+∞

H(0.9, 0.9) = −0.9 × log(0.9) = 0.095

−y × log(p) = −p × log(y)

y = 1 p = 0.5 −1 × log(0.5) = 0.693

y = 0.5 p = 1 −0.5 × log(1) = 0

H(r, p) ≥ H(r, q) + H(q, p)
r = 0.9 p = 0.5 q = 0.4

H(0.9, 0.5) = 0.624
H(0.9, 0.4) = 0.825
H(0.4, 0.5) = 0.277

0.624 ≥ 0.825 + 0.277

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 215 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In conclusion, while the cross-entropy loss is a useful loss function for

training neural networks via (stochastic) gradient descent, it is not a proper

distance metric, as it does not satisfy any of the three criteria.

Tips:

交叉熵损失，是训练逻辑回归或神经⽹络分类器时，⽤于衡量两个概率

分布之间距离的损失函数，这种损失函数在训练过程中，可以引导模型

学习到更好的概率分布。

但是，交叉熵损失，不是良好的度量标准，因为它不满⾜三⻆不等式。

Exercises
27-1. Suppose we consider using the mean absolute error (MAE) as an alternative

to the root mean square error (RMSE) for measuring the performance of a

machine learning model, where

and

However, a colleague argues that the MAE is not a proper distance metric in

metric space because it involves an absolute value, so we should use the RMSE

instead. Is this argument correct?

27-2. Based on your answer to the previous question, would you say that the MAE

is better or is worse than the RMSE?

MAE = ∣y −
n

1

i=1

∑
n

(i)
 ∣ŷ(i)

RMSE = (y −)
n

1

i=1

∑
n

(i) ŷ(i) 2

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 216 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 28: The k in k-Fold Cross-
Validation
k-fold cross-validation is a common choice for evaluating machine learning

classifiers because it lets us use all training data to simulate how well a

machine learning algorithm might perform on new data. What are the

advantages and disadvantages of choosing a large k?

本章讨论了 k-fold 交叉验证，并讨论了它的优缺点。

k-fold 交叉验证是⼀种常⽤的评估机器学习分类器的⽅法，它让我们使

⽤所有训练数据来模拟机器学习算法在新数据上的表现。

选择较⼤的 k 值时，训练集之间的差异较⼩，因此模型之间的差异也较

⼩。

选择较⼩的 k 值时，训练集之间的差异较⼤，因此模型之间的差异也较

⼤。

We can think of k-fold cross-validation as a workaround for model evaluation

when we have limited data. In machine learning model evaluation, we care about

the generalization performance of our model, that is, how well it performs on new

data. In k-fold cross-validation, we use the training data for model selection and

evaluation by partitioning it into k validation rounds and folds. If we have k folds,

we have k iterations, leading to k different models, as illustrated in Figure 28.1.

Figure 28.1

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 217 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Using k-fold cross-validation, we usually evaluate the performance of a particular

hyperparameter configuration by computing the average performance over the k

models. This performance reflects or approximates the performance of a model

trained on the complete training dataset after evaluation.

使⽤ k-fold 交叉验证，我们通常通过计算 k 个模型的平均性能，来评估特定

超参配置的性能。

The following sections cover the trade-offs of selecting values for k in k-fold cross-

validation and address the challenges of large k values and their computational

demands, especially in deep learning contexts. We then discuss the core purposes

of k and how to choose an appropriate value based on specific modeling needs.

Trade-offs in Selecting Values for k
If k is too large, the training sets are too similar between the different rounds of

cross-validation. The k models are thus very similar to the model we obtain by

training on the whole training set. In this case, we can still leverage the advantage

of k-fold cross-validation: evaluating the performance for the entire training set

via the held-out validation fold in each round. (Here, we obtain the training set by

concatenating all k -- 1 training folds in a given iteration.) However, a

disadvantage of a large k is that it is more challenging to analyze how the

machine learning algorithm with the particular choice of hyperparameter setting

behaves on different training datasets.

Besides the issue of too-similar datasets, running k-fold cross-validation with a

large value of k is also computationally more demanding. A larger k is more

expensive since it increases both the number of iterations and the training set size

at each iteration. This is especially problematic if we work with relatively large

models that are expensive to train, such as contemporary deep neural networks.

A common choice for k is typically 5 or 10, for practical and historical reasons. A

study by Ron Kohavi (see Refrence at the end of this chapter) found that k = 10

offers a good bias and variance trade-off for classical machine learning

algorithms, such as decision trees and naive Bayes classifiers, on a handful of

small datasets.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 218 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

5 或 10 是 k-fold 交叉验证的常⻅选择，这是出于实际和历史原因。Ron

Kohavi 的研究（⻅本章末尾的参考⽂献）发现，k = 10 在⼩型数据集上对经

典机器学习算法（如决策树和朴素⻉叶斯分类器）提供了良好的偏差和⽅差

权衡。

For example, in 10-fold cross-validation, we use 9/10 (90 percent) of the data for

training in each round, whereas in 5-fold cross-validation, we use only 4/5 (80

percent) of the data, as shown in Figure 28.2.

Figure 28.2

However, this does not mean large training sets are bad, since they can reduce the

pessimistic bias of the performance estimate (mostly a good thing) if we assume

that the model training can benefit from more training data. (See Figure 5.1 on

page for an example of a learning curve.)

In practice, both a very small and a very large k may increase variance. For

instance, a larger k makes the training folds more similar to each other since a

smaller proportion is left for the held-out validation sets. Since the training folds

are more similar, the models in each round will be more similar. In practice, we

may observe that the variance of the held-out validation fold scores is more

similar for larger values of k. On the other hand, when k is large, the validation

sets are small, so they may contain more random noise or be more susceptible to

quirks of the data, leading to more variation in the validation scores across the

different folds. Even though the models themselves are more similar (since the

training sets are more similar), the validation scores may be more sensitive to the

particularities of the small validation sets, leading to higher variance in the overall

cross-validation score.

k 过⼤或过⼩，都会增加⽅差。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 219 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Determining Appropriate Values for k
When deciding upon an appropriate value of k, we are often guided by

computational performance and conventions. However, it's worthwhile to define

the purpose and context of using k-fold cross-validation. For example, if we care

primarily about approximating the predictive performance of the final model,

using a large k makes sense. This way, the training folds are very similar to the

combined training dataset, yet we still get to evaluate the model on all data

points via the validation folds.

决定适当的 k 值时，先考虑使⽤ k-fold 交叉验证的⽬的和上下⽂。例如，如

果我们主要关⼼近似最终模型的预测性能，使⽤较⼤的 k 是有意义的。这

样，训练集⾮常相似于组合训练数据集，但我们仍然可以通过验证集评估模

型。

On the other hand, if we care to evaluate how sensitive a given hyperparameter

configuration and training pipeline is to different training datasets, then choosing

a smaller number for k makes more sense.

如果我们主要关⼼给定超参配置和训练管道对不同训练数据集的敏感性，那

么选择较⼩的 k 是有意义的。

Since most practical scenarios consist of two steps -- tuning hyperparameters and

evaluating the performance of a model -- we can also consider a two-step

procedure. For instance, we can use a smaller k during hyperparameter tuning.

This will help speed up the hyperparameter search and probe the hyperparameter

configurations for robustness (in addition to the average performance, we can

also consider the variance as a selection criterion). Then, after hyperparameter

tuning and selection, we can increase the value of k to evaluate the model.

⼤多数实际场景都包括两个步骤：调整超参和评估模型性能。因此，我们也

可以考虑⼀个两步流程。

例如，在调整超参时，我们可以使⽤较⼩的 k。这将帮助加速超参搜

索，并测试超参配置的稳健性（除了平均性能，我们还可以考虑⽅差作

为选择标准）。

然后，在调整超参和选择后，我们可以增加 k 值来评估模型。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 220 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

However, reusing the same dataset for model selection and evaluation introduces

biases, and it is usually better to use a separate test set for model evaluation.

Also, nested cross-validation may be preferred as an alternative to k-fold

cross-validation.

然⽽，重复使⽤相同的数据集进⾏模型选择和评估，会引⼊偏差，通常最好

使⽤单独的测试集进⾏模型评估。此外，嵌套交叉验证可能⽐ k-fold 交叉验

证更可取。

更多细节： 嵌套交叉验证

Exercises
28-1. Suppose we want to provide a model with as much training data as possible.

We consider using leave-one-out cross-validation (LOOCV), a special case of k-fold

cross-validation where k is equal to the number of training examples, such that

the validation folds contain only a single data point. A colleague mentions that

LOOCV is defective for discontinuous loss functions and performance measures

such as classification accuracy. For instance, for a validation fold consisting of only

one example, the accuracy is always either 0 (0 percent) or 1 (99 percent). Is this

really a problem?

28-2. This chapter discussed model selection and model evaluation as two use

cases of k-fold cross-validation. Can you think of other use cases?

References
For a longer and more detailed explanation of why and how to use k-fold

cross-validation, see my article: "Model Evaluation, Model Selection, and

Algorithm Selection in Machine Learning"? (2018),

https://arxiv.org/abs/1811.12808.

The paper that popularized the recommendation of choosing k = 5 and k = 10:

Ron Kohavi, "A Study of Cross-Validation and Bootstrap for Accuracy

Estimation and Model Selection"? (1995),

https://dl.acm.org/doi/10.5555/1643031.1643047.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 221 页，共 239 页

https://ljalphabeta.gitbooks.io/python-/content/nested.html
https://arxiv.org/abs/1811.12808
https://dl.acm.org/doi/10.5555/1643031.1643047
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 222 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 29: Training and Test Set
Discordance
Suppose we train a model that performs much better on the test dataset than

on the training dataset. Since a similar model configuration previously worked

well on a similar dataset, we suspect something might be unusual with the

data. What are some approaches for looking into training and test set

discrepancies, and what strategies can we use to mitigate these issues?

Before investigating the datasets in more detail, we should check for technical

issues in the data loading and evaluation code. For instance, a simple sanity

check is to temporarily replace the test set with the training set and to reevaluate

the model. In this case, we should see identical training and test set performances

(since these datasets are now identical). If we notice a discrepancy, we likely have

a bug in the code; in my experience, such bugs are frequently related to incorrect

shuffling or inconsistent (often missing) data normalization.

在进⼀步检查数据集之前，我们应该检查数据加载和评估代码中的技术问

题。

例如，⼀个简单的健全性检查是暂时将测试集替换为训练集，并重新评

估模型。

在这种情况下，我们应该看到训练和测试集的性能相同（因为这些数据

集现在相同）。

如果我们注意到差异，我们代码可能有bug；根据经验，这种错误，通

常是数据洗牌不均匀或数据归⼀化不⼀致（通常缺失）。

If the test set performance is much better than the training set performance, we

can rule out overfitting. More likely, there are substantial differences in the

training and test data distributions. These distributional differences may affect

both the features and the targets. Here, plotting the target or label distributions of

training and test data is a good idea. For example, a common issue is that the test

set is missing certain class labels if the dataset was not shuffled properly before

splitting it into training and test data. For small tabular datasets, it is also feasible

to compare feature distributions in the training and test sets using histograms.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 223 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Looking at feature distributions is a good approach for tabular data, but this is

trickier for image and text data. A relatively easy and more general approach to

check for discrepancies between training and test sets is adversarial validation.

Adversarial validation , illustrated in

Figure 29.1

is a technique to identify the degree of similarity between the training and test

data. We first merge the training and test sets into a single dataset, and then we

create a binary target variable that distinguishes between training and test data.

For instance, we can use a new Is test? label where we assign the label 0 to

training data and the label 1 to test data. We then use k-fold cross-validation or

repartition the dataset into a training set and a test set and train a machine

learning model as usual. Ideally, we want the model to perform poorly, indicating

that the training and test data distributions are similar. On the other hand, if the

model performs well in predicting the Is test? label, it suggests a discrepancy

between the training and test data that we need to investigate further.

对抗验证，⽤于识别训练和测试数据之间的相似程度。

我们⾸先将训练和测试集合并为⼀个数据集，然后创建⼀个⼆元⽬标变

量，⽤于区分训练和测试数据。

例如，我们可以使⽤⼀个新的 Is test? 标签，将标签 0 分配给训练数据，

将标签 1 分配给测试数据。

然后，我们使⽤ k-fold 交叉验证或重新划分数据集为训练集和测试集，

并像往常⼀样训练机器学习模型。

理想情况下，我们希望模型表现不佳，表明训练和测试数据分布相似。

另⼀⽅⾯，如果模型在预测 Is test? 标签时表现良好，则表明训练和测试

数据之间存在差异，我们需要进⼀步调查。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 224 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

What mitigation techniques should we use if we detect a training-test set

discrepancy using adversarial validation? If we're working with a tabular dataset,

we can remove features one at a time to see if this helps address the issue, as

spurious features can sometimes be highly correlated with the target variable. To

implement this strategy, we can use sequential feature selection algorithms with

an updated objective. For example, instead of maximizing classification accuracy,

we can minimize classification accuracy. For cases where removing features is not

so trivial (such as with image and text data), we can also investigate whether

removing individual training instances that are different from the test set can

address the discrepancy issue.

如果我们使⽤对抗验证检测到训练-测试集差异，我们应该使⽤什么缓解技

术？ 如果我们使⽤表格数据集，我们可以⼀次删除⼀个特征，看看是否有

助于解决这个问题，因为虚假特征有时与⽬标变量⾼度相关。 为了实现这

个策略，我们可以使⽤顺序特征选择算法，并更新⽬标函数。 例如，我们

不再最⼤化分类准确率，⽽是最⼩化分类准确率。 对于图像和⽂本数据，

我们也可以研究是否删除与测试集不同的训练实例是否有助于解决差异问

题。

Exercises
29-1. What is a good performance baseline for the adversarial prediction task?

29-2. Since training datasets are often bigger than test datasets, adversarial

validation often results in an imbalanced prediction problem (with a majority of

examples labeled as Is test? being false instead of true). Is this an issue, and if so,

how can we mitigate that?

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 225 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Chapter 30: Limited Labeled Data
Suppose we plot a learning curve (as shown in Figure 5.1 on page , for example)

and find the machine learning model overfits and could benefit from more

training data. What are some different approaches for dealing with limited

labeled data in supervised machine learning settings?

学习曲线（Learning Curve）是机器学习中⽤于评估模型性能随训练数据量

变化趋势的图表。它通常⽤于诊断模型是否存在过拟合或⽋拟合问题。

In lieu of collecting more data, there are several methods related to regular

supervised learning that we can use to improve model performance in limited

labeled data regimes.

除了收集更多数据，还有⼏种⽅法，⽤于改进标签数据有限时的模型性能。

Improving Model Performance with
Limited Labeled Data
The following sections explore various machine learning paradigms that help in

scenarios where training data is limited.

Labeling More Data

Collecting additional training examples is often the best way to improve the

performance of a model (a learning curve is a good diagnostic for this). However,

this is often not feasible in practice, because acquiring high-quality data can be

costly, computational resources and storage might be insufficient, or the data may

be hard to access.

收集更多训练数据，通常是提⾼模型性能的最佳⽅法（学习曲线是诊断此问

题的⼀个很好的指标）。

然⽽，这在实践中通常不可⾏，因为获取⾼质量数据可能很昂贵，计算资源

和存储空间可能不⾜，或者数据可能难以获取。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 226 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Bootstrapping the Data

Similar to the techniques for reducing overfitting discussed in Chapter [ch05], it

can be helpful to "bootstrap" the data by generating modified (augmented) or

artificial (synthetic) training examples to boost the performance of the predictive

model. Of course, improving the quality of data can also lead to the improved

predictive performance of a model, as discussed in Chapter [ch21].

与第 5 章讨论的减少过拟合的技术类似，可以通过⽣成修改（增强）或⼈⼯

（合成）训练示例来“引导”数据，以提⾼预测模型的性能。

当然，提⾼数据质量也可以提⾼模型的预测性能，如第 21 章所述。

Transfer Learning

Transfer learning describes training a model on a general dataset (for example,

ImageNet) and then fine-tuning the pretrained target dataset (for example, a

dataset consisting of different bird species), as outlined in Figure 30.1.

迁移学习描述了在通⽤数据集（例如 ImageNet）上训练模型，然后对预训

练的⽬标数据集（例如包含不同⻦类物种的数据集）进⾏微调，如图 1.1 所

示。

Figure 30.1

Transfer learning is usually done in the context of deep learning, where model

weights can be updated. This is in contrast to tree-based methods, since most

decision tree algorithms are nonparametric models that do not support iterative

training or parameter updates.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 227 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

迁移学习，通常⽤于深度学习场景，其中可以更新模型权重。这与基于树的

⽅法形成对⽐，因为⼤多数决策树算法是⾮参数模型，不⽀持迭代训练或参

数更新。

Self-Supervised Learning

Similar to transfer learning, in self-supervised learning, the model is pretrained on

a different task before being fine-tuned to a target task for which only limited data

exists. However, self-supervised learning usually relies on label information that

can be directly and automatically extracted from unlabeled data. Hence, self-

supervised learning is also often called unsupervised pretraining.

与迁移学习类似，在⾃监督学习中，模型在不同的任务上进⾏预训练，然后

针对⽬标任务进⾏微调，⽽⽬标任务只有有限的数据。

然⽽，⾃监督学习通常依赖于可以直接从⽆标签数据中⾃动提取的标签信

息。因此，⾃监督学习也经常被称为⽆监督预训练。

Common examples of self-supervised learning include the next word (used in GPT,

for example) or masked word (used in BERT, for example) pretraining tasks in

language modeling, covered in more detail in Chapter [ch17]. Another intuitive

example from computer vision includes inpainting: predicting the missing part of

an image that was randomly removed, illustrated in Figure 30.2.

Figure 30.2

For more detail on self-supervised learning, see Chapter [ch02].

Active Learning

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 228 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

In active learning, illustrated in Figure 30.3, we typically involve manual labelers

or users for feedback during the learning process. However, instead of labeling the

entire dataset up front, active learning includes a prioritization scheme for

suggesting unlabeled data points for labeling to maximize the machine learning

model's performance.

在主动学习中，如图 1.3 所示，我们通常涉及⼿动标签器或⽤户在训练过程

中提供反馈。

然⽽，与提前标记整个数据集不同，主动学习包括⼀个优先级⽅案，⽤于建

议未标记的数据点进⾏标记，以最⼤化机器学习模型的性能。

Figure 30.3

The term active learning refers to the fact that the model actively selects data for

labeling. For example, the simplest form of active learning selects data points with

high prediction uncertainty for labeling by a human annotator (also referred to as

an oracle).

Few-Shot Learning

In a few-shot learning scenario, we often deal with extremely small datasets

that include only a handful of examples per class. In research contexts, 1-shot(one

example per class) and 5-shot (five examples per class) learning scenarios are very

common. An extreme case of few-shot learning is zero-shot learning, where no

labels are provided. Popular examples of zero-shot learning include GPT-3 and

related language models, where the user has to provide all the necessary

information via the input prompt, as illustrated in Figure 30.4.

在少样本学习场景中，我们通常处理包含每个类别只有少量示例的极端情

况。

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 229 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

在研究上下⽂中，1-shot（每个类别⼀个示例）和5-shot（每个类别五个示

例）学习场景⾮常常⻅。

⼩样本学习的极端情况，是零样本学习，其中没有提供标签。

零样本学习的流⾏示例包括 GPT-3 和相关语⾔模型，其中⽤户必须通过输⼊

提示提供所有必要信息，如图 1.4 所示。

Zero-shot classification with ChatGPT

For more detail on few-shot learning, see Chapter [ch03].

Meta-Learning

Meta-learning involves developing methods that determine how machine learning

algorithms can best learn from data. We can therefore think of meta-learning as

"learning to learn."? The machine learning community has developed several

approaches for meta-learning. Within the machine learning community, the term

meta-learning doesn't just represent multiple subcategories and approaches; it is

also occasionally employed to describe related yet distinct processes, leading to

nuances in its interpretation and application.

Meta-learning is one of the main subcategories of few-shot learning. Here, the

focus is on learning a good feature extraction module, which converts support and

query images into vector representations. These vector representations are

optimized for determining the predicted class of the query example via

comparisons with the training examples in the support set. (This form of meta-

learning is illustrated in Chapter [ch03] on page .) Another branch of meta-

learning unrelated to the few-shot learning approach is focused on extracting

metadata (also called meta-features) from datasets for supervised learning tasks,

as illustrated in Figure 30.5. The meta-features are descriptions of the dataset

itself. For example, these can include the number of features and statistics of the

different features (kurtosis, range, mean, and so on).

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 230 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 30.5

The extracted meta-features provide information for selecting a machine learning

algorithm for the dataset at hand. Using this approach, we can narrow down the

algorithm and hyperparameter search spaces, which helps reduce overfitting

when the dataset is small.

Weakly Supervised Learning

Weakly supervised learning, illustrated in Figure 30.6, involves using an external

label source to generate labels for an unlabeled dataset. Often, the labels created

by a weakly supervised labeling function are more noisy or inaccurate than those

produced by a human or domain expert, hence the term weakly supervised. We

can develop or adopt a rule-based classifier to create the labels in weakly

supervised learning; these rules usually cover only a subset of the unlabeled

dataset.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 231 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 30.6

Let'sreturntotheexampleofemailspamclassificationfromChapter [ch23] to illustrate

a rule-based approach for data labeling. In weak supervision, we could design a

rule-based classifier based on the keyword SALE in the email subject header line

to identify a subset of spam emails. Note that while we may use this rule to label

certain emails as spam positive, we should not apply this rule to label emails

without SALE as non-spam. Instead, we should either leave those unlabeled or

apply a different rule to them.

There is a subcategory of weakly supervised learning referred to as PU-learning. In

PU-learning, which is short for positive-unlabeled learning, we label and learn

only from positive examples.

Semi-Supervised Learning

Semi-supervised learning is closely related to weakly supervised learning: it also

involves creating labels for unlabeled instances in the dataset. The main

difference between these two methods lies in how we create the labels. In weak

supervision, we create labels using an external labeling function that is often

noisy, inaccurate, or covers only a subset of the data. In semi-supervision, we do

not use an external label function; instead, we leverage the structure of the data

itself. We can, for example, label additional data points based on the density of

neighboring labeled data points, as illustrated in Figure 30.7.

Figure 30.7

While we can apply weak supervision to an entirely unlabeled dataset, semi-

supervised learning requires at least a portion of the data to be labeled. In

practice, it is possible first to apply weak supervision to label a subset of the data

and then to use semi-supervised learning to label instances that were not

captured by the labeling functions.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 232 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Thanks to their close relationship, semi-supervised learning is sometimes referred

to as a subcategory of weakly supervised learning, and vice versa.

Self-Training

Self-training falls somewhere between semi-supervised learning and weakly

supervised learning. For this technique, we train a model to label the dataset or

adopt an existing model to do the same. This model is also referred to as a

pseudo-labeler.

Self-training does not guarantee accurate labels and is thus related to weakly

supervised learning. Moreover, while we use or adopt a machine learning model

for this pseudo-labeling, self-training is also related to semi-supervised learning.

An example of self-training is knowledge distillation, discussed in Chapter [ch06].

Multi-Task Learning

Multi-task learning trains neural networks on multiple, ideally related tasks. For

example, if we are training a classifier to detect spam emails, spam classification

is the main task. In multi-task learning, we can add one or more related tasks for

the model to solve, referred to as auxiliary tasks. For the spam email example, an

auxiliary task could be classifying the email's topic or language.

Typically, multi-task learning is implemented via multiple loss functions that have

to be optimized simultaneously, with one loss function for each task. The auxiliary

tasks serve as an inductive bias, guiding the model to prioritize hypotheses that

can explain multiple tasks. This approach often results in models that perform

better on unseen data. There are two subcategories of multi-task learning: multi-

task learning with hard parameter sharing and multi-task learning with soft

parameter sharing. Figure 30.8 illustrates the difference between these two

methods.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 233 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 30.8

In hard parameter sharing, as shown in Figure 30.8, only the output layers are

task specific, while all the tasks share the same hidden layers and neural network

backbone architecture. In contrast, soft parameter sharing uses separate neural

networks for each task, but regularization techniques such as distance

minimization between parameter layers are applied to encourage similarity

among the networks.

Multimodal Learning

While multi-task learning involves training a model with multiple tasks and loss

functions, multimodal learning focuses on incorporating multiple types of input

data.

Common examples of multimodal learning are architectures that take both image

and text data as input (though multimodal learning is not restricted to only two

modalities and can be used for any number of input modalities). Depending on

the task, we may employ a matching loss that forces the embedding vectors

between related images and text to be similar, as shown in Figure 30.9. (See

Chapter [ch01] for more on embedding vectors.)

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 234 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 30.9

Figure 30.9 shows image and text encoders as separate components. The image

encoder can be a convolutional backbone or a vision transformer, and the

language encoder can be a recurrent neural network or language transformer.

However, it's common nowadays to use a single transformer-based module that

can simultaneously process image and text data. For example, the VideoBERT

model has a joint module that processes both video and text for action

classification and video captioning.

Optimizing a matching loss, as shown in Figure 30.9, can be useful for learning

embeddings that can be applied to various tasks, such as image classification or

summarization. However, it is also possible to directly optimize the target loss,

like classification or regression, as Figure 30.10 illustrates.

Figure 30.10

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 235 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 30.10 shows data being collected from two different sensors. One could be

a thermometer and the other could be a video camera. The signal encoders

convert the information into embeddings (sharing the same number of

dimensions), which are then concatenated to form the input representation for

the model.

Intuitively, models that combine data from different modalities generally perform

better than unimodal models because they can leverage more information.

Moreover, recent research suggests that the key to the sucess of multimodal

learning is the improved quality of the latent space representation.

Inductive Biases

Choosing models with stronger inductive biases can help lower data requirements

by making assumptions about the structure of the data. For example, due to their

inductive biases, convolutional networks require less data than vision

transformers, as discussed in Chapter [ch13].

Recommendations
Of all these techniques for reducing data requirements, how should we decide

which ones to use in a given situation?

Techniques like collecting more data, data augmentation, and feature engineering

are compatible with all the methods discussed in this chapter. Multi-task learning

and multimodal inputs can also be used with the learning strategies outlined

here. If the model suffers from overfitting, we should also include techniques

discussed in Chapters [ch05] and [ch06].

But how can we choose between active learning, few-shot learning, transfer

learning, self-supervised learning, semi-supervised learning, and weakly

supervised learning? Deciding which supervised learning technique(s) to try is

highly context dependent. You can use the diagram in Figure 30.11 as a guide to

choosing the best method for your particular project.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 236 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

Figure 30.11

Note that the dark boxes in Figure 30.11 are not terminal nodes but arc back to

the second box, "Evaluate model performance"?; additional arrows were omitted

to avoid visual clutter.

Exercises
30-1. Suppose we are given the task of constructing a machine learning model

that utilizes images to detect manufacturing defects on the outer shells of tablet

devices similar to iPads. We have access to millions of images of various

computing devices, including smartphones, tablets, and computers, which are not

labeled; thousands of labeled pictures of smartphones depicting various types of

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 237 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

damage; and hundreds of labeled images specifically related to the target task of

detecting manufacturing defects on tablet devices. How could we approach this

problem using self-supervised learning or transfer learning?

30-2. In active learning, selecting difficult examples for human inspection and

labeling is often based on confidence scores. Neural networks can provide such

scores by using the logistic sigmoid or softmax function in the output layer to

calculate class-membership probabilities. However, it is widely recognized that

deep neural networks exhibit overconfidence on out-of-distribution data,

rendering their use in active learning ineffective. What are some other methods to

obtain confidence scores using deep neural networks for active learning?

References
While decision trees for incremental learning are not commonly implemented,

algorithms for training decision trees in an itera- tive fashion do exist:

https://en.wikipedia.org/wiki/Incremental _decision_tree.

Models trained with multi-task learning often outperform models trained on a

single task: Rich Caruana, "Multitask Learning"? (1997),

https://doi.org/10.1023%2FA%3A1007379606734.

A single transformer-based module that can simultaneously process image

and text data: Chen Sun et al., "VideoBERT: A Joint Model for Video and

Language Representation Learning"? (2019), https://arxiv.org/abs/1904.01766.

The aforementioned research suggesting the key to the success of multimodal

learning is the improved quality of the latent space representation: Yu Huang

et al., "What Makes Multi-Modal Learning Better Than Single (Provably)"?

(2021), https://arxiv.org/abs/2106.04538.

For more information on active learning: Zhen et al., "A Comparative Survey of

Deep Active Learning"? (2022), https://arxiv.org/abs/2203.13450.

For a more detailed discussion on how out-of-distribution data can lead to

overconfidence in deep neural networks: Anh Nguyen, Jason Yosinski, and Jeff

Clune, "Deep Neural Networks Are Easily Fooled: High Confidence Predictions

for Unrecognizable Images"? (2014), https://arxiv.org/abs/1412.1897.

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 238 页，共 239 页

https://en.wikipedia.org/wiki/Incremental_decision_tree
https://en.wikipedia.org/wiki/Incremental_decision_tree
https://doi.org/10.1023%2FA%3A1007379606734
https://arxiv.org/abs/1904.01766
https://arxiv.org/abs/2106.04538
https://arxiv.org/abs/2203.13450
https://arxiv.org/abs/1412.1897
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | ⼤模型技术30讲（原版&中⽂批注） | https://ningg.top/Machine-Learning-Q-and-AI/

第 239 页，共 239 页

https://github.com/ningg/Machine-Learning-Q-and-AI

	大模型技术30讲（英文&中文批注）
	1.背景
	2.项目介绍
	2.1.你将收获什么？
	2.2.迭代计划

	3.在线阅读
	4.如何贡献
	30 Essential Questions and Answers onMachine Learning and AI
	What People Are Saying
	Table of Contents
	Part I: Neural Networks and Deep Learning
	Part II: Computer Vision
	Part III: Natural Language Processing
	Part IV: Production and Deployment
	Part V: Predictive Performance and ModelEvaluation

	Introduction
	Who Is This Book For?
	What Will You Get Out of This Book?
	How to Read This Book
	Online Resources

	Chapter 1: Embeddings, Latent Space,and Representations
	Embeddings
	Latent Space
	Representation
	Exercises
	References

	Chapter 2: Self-Supervised Learning
	Self-Supervised Learning vs. TransferLearning
	Leveraging Unlabeled Data
	Self-Prediction and Contrastive Self-Supervised Learning
	Exercises
	References

	Chapter 3: Few-Shot Learning
	Datasets and Terminology
	Exercises

	Chapter 4: The Lottery TicketHypothesis
	The Lottery Ticket Training Procedure
	Practical Implications and Limitations
	Exercises
	References

	Chapter 5: Reducing Overfitting withData
	Common Methods
	Collecting More Data
	Data Augmentation
	Pretraining

	Other Methods
	Exercises
	References

	Chapter 6: Reducing Overfitting withModel Modifications
	Common Methods
	Regularization
	Smaller Models
	Caveats with Smaller Models
	Ensemble Methods

	Other Methods
	Choosing a Regularization Technique
	Exercises
	References

	Chapter 7: Multi-GPU TrainingParadigms
	The Training Paradigms
	Model Parallelism
	Data Parallelism
	Tensor Parallelism
	Pipeline Parallelism
	Sequence Parallelism

	Recommendations
	Exercises
	References

	Chapter 8: The Success ofTransformers
	The Attention Mechanism
	Pretraining via Self-Supervised Learning
	Large Numbers of Parameters
	Easy Parallelization
	Exercises
	References

	Chapter 9: Generative AI Models
	Generative vs. Discriminative Modeling
	Types of Deep Generative Models
	Energy-Based Models
	Variational Autoencoders
	Generative Adversarial Networks
	Flow-Based Models
	Autoregressive Models
	Diffusion Models
	Consistency Models

	Recommendations
	Exercises
	References

	Chapter 10: Sources of Randomness
	Model Weight Initialization
	Dataset Sampling and Shuffling
	Nondeterministic Algorithms
	Different Runtime Algorithms
	Hardware and Drivers
	Randomness and Generative AI
	Exercises
	References

	Chapter 11: Calculating the Numberof Parameters
	How to Find Parameter Counts
	Convolutional Layers
	Fully Connected Layers

	Practical Applications
	Exercises

	Chapter 12: Fully Connected andConvolutional Layers
	When the Kernel and Input Sizes Are Equal
	When the Kernel Size Is 1
	Recommendations
	Exercises

	Chapter 13: Large Training Sets forVision Transformers
	Inductive Biases in CNNs
	ViTs Can Outperform CNNs
	Inductive Biases in ViTs
	Recommendations
	Exercises

	References

	Chapter 14: The DistributionalHypothesis
	Word2vec, BERT, and GPT
	Does the Hypothesis Hold?
	Exercises
	References

	Chapter 15: Data Augmentation forText
	Synonym Replacement
	Word Deletion
	Word Position Swapping
	Sentence Shuffling
	Noise Injection
	Back Translation
	Synthetic Data
	Recommendations
	Exercises
	References

	Chapter 16: Self-Attention
	Attention in RNNs
	The Self-Attention Mechanism
	Exercises
	References

	Chapter 17: Encoder- and Decoder-Style Transformers
	The Original Transformer
	Encoders
	Decoders

	Encoder-Decoder Hybrids
	Terminology
	Contemporary Transformer Models
	Exercises
	References

	Chapter 18: Using and Fine-TuningPretrained Transformers
	Using Transformers for Classification Tasks
	In-Context Learning, Indexing, and PromptTuning
	Parameter-Efficient Fine-Tuning
	Reinforcement Learning with HumanFeedback
	Adapting Pretrained Language Models
	Exercises
	References

	Chapter 19: Evaluating GenerativeLarge Language Models
	Evaluation Metrics for LLMs
	Perplexity
	BLEU Score
	ROUGE Score
	BERTScore

	Surrogate Metrics
	Exercises
	References

	Chapter 20: Stateless and StatefulTraining
	Stateless (Re)training
	Stateful Training
	Exercises

	Chapter 21: Data-Centric AI
	Data-Centric vs. Model-Centric AI
	Recommendations
	Exercises
	References

	Chapter 22: Speeding Up Inference
	Parallelization
	Vectorization
	Loop Tiling
	Operator Fusion
	Quantization
	Exercises
	References

	Chapter 23: Data Distribution Shifts
	Covariate Shift
	Label Shift
	Concept Drift
	Domain Shift
	Types of Data Distribution Shifts
	Exercises
	References

	Chapter 24: Poisson and OrdinalRegression
	Exercises

	Chapter 25: Confidence Intervals
	Defining Confidence Intervals
	The Methods
	Method 1: Normal Approximation Intervals
	Method 2: Bootstrapping Training Sets
	Method 3: Bootstrapping Test Set Predictions
	Method 4: Retraining Models with DifferentRandom Seeds

	Recommendations
	Exercises
	References

	Chapter 26: Confidence Intervals vs.Conformal Predictions
	Confidence Intervals and PredictionIntervals
	Prediction Intervals and ConformalPredictions
	Prediction Regions, Intervals, and Sets
	Computing Conformal Predictions
	A Conformal Prediction Example
	The Benefits of Conformal Predictions
	Recommendations
	Exercises
	References

	Chapter 27: Proper Metrics
	The Criteria
	The Mean Squared Error
	The Cross-Entropy Loss
	Exercises

	Chapter 28: The k in k-Fold Cross-Validation
	Trade-offs in Selecting Values for k
	Determining Appropriate Values for k
	Exercises
	References

	Chapter 29: Training and Test SetDiscordance
	Exercises

	Chapter 30: Limited Labeled Data
	Improving Model Performance withLimited Labeled Data
	Labeling More Data
	Bootstrapping the Data
	Transfer Learning
	Self-Supervised Learning
	Active Learning
	Few-Shot Learning
	Meta-Learning
	Weakly Supervised Learning
	Semi-Supervised Learning
	Self-Training
	Multi-Task Learning
	Multimodal Learning
	Inductive Biases

	Recommendations
	Exercises
	References

