2025/7/20 20:26 | RIEEFFAR30YE (JHERR& R CHEE) | https:/ningg top/Machine-Learning-Q-and-Al/

AREFAR30H (S &AIHLE)

AAERIFEAR303 (JFRR), 30 Essential Questions and Answers on Machine

Learning and Al
=141
1.B8=

LT =R (RIREFRAR30M), BHREET T, BERRE, SFTAT MRKHE
/#\Egﬁg, ?Eﬁ%o

BR, WEELBR & RFHEIFRK:

o 1. (KRIEEMSARI0MY BBRMR (2025535 F2,%H7), ENRIRE, RE;

o 2LRERD AiE , EHERFNPX, FHTHEMLE, K52 Al FUHEREE
RXH), BEBAIRE m0RiE

« 3FER mrm BN, HEMNEB A TEBEIER, RANE,

Ftb, #2 FEIAS714: Machine Learning Q and Al, REHMMRIAER,

RiE, BRBER, xRN md 8, HEH, FHHE%E github £,

2B 1448

AIMBZRAUFZIARERAESNATRE, EFRIBR (30 Essential
Questions and Answers on Machine Learning and Al) , #4THHEE, 1E3RA]

L,

2.1 MRRBWGEA T 472

L REMFES): KMEERAEQHEE
2. ABROIARIE (X + FX)
3. HESHP, CHEE, EEAEE, TTEGATTREX


https://sebastianraschka.com/books/ml-q-and-ai/
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/2020:26 | KIS AR30PE EER& P SCHtE) | https:/ningg.top/Machine-Learning-Q-and-Al/

2.2 1T
1. BhR: AXXARE:

2. S pdf X4
3. AT EIZ 1 FIRELRX: TODO

3.EZ&IGNE

FELIENE: (KRB0 , pdf Xf: (KERIRAR3034-PDFARZS)

RN LM DR, BEHER

MACHINE LEARNING

Q.Al

4. 9Nl B3R

HATGEAE IR B ST !
o % R Bug - KUBRMIBIRZL Issue

o . IIRERIN - BIFEIEMERTA]
* 7 NBRE - BYHHBERSR

| Note: FERHISH ERuE 8.

30 Essential Questions and Answers on
Machine Learning and Al


https://ningg.top/Machine-Learning-Q-and-AI/
https://ningg.top/Machine-Learning-Q-and-AI/pdf/%E5%A4%A7%E6%A8%A1%E5%9E%8B%E6%8A%80%E6%9C%AF30%E8%AE%B2(%E8%8B%B1%E6%96%87&%E4%B8%AD%E6%96%87%E6%89%B9%E6%B3%A8)_LLM_30_Essential_Lectures_AI.pdf
https://github.com/ningg/Machine-Learning-Q-and-AI/issues
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | FRAERIFG AR30HE (5 il & e #ti:) | https://ningg.top/Machine-Learning-Q-and-Al/

Machine learning and Al are moving at a rapid pace. Researchers and
practitioners are constantly struggling to keep up with the breadth of
concepts and techniques. This book provides bite-sized bits of knowledge
for your journey from machine learning beginner to expert, covering topics
from various machine learning areas. Even experienced machine learning

researchers and practitioners will encounter something new that they can

add to their arsenal of techniques.

What People Are Saying

"Sebastian has a gift for distilling complex, Al-related topics into practical
takeaways that can be understood by anyone. His new book, Machine
Learning Q and Al, is another great resource for Al practitioners of any

level."? ""Cameron R. Wolfe, Writer of Deep (Learning) Focus

"Sebastian uniquely combines academic depth, engineering agility, and the
ability to demystify complex ideas. He can go deep into any theoretical
topics, experiment to validate new ideas, then explain them all to you in
simple words. If you're starting your journey into machine learning,
Sebastian is your guide."? ""Chip Huyen, Author of Designing Machine

Learning Systems

"One could hardly ask for a better guide than Sebastian, who is, without
exaggeration, the best machine learning educator currently in the field. On
each page, Sebastian not only imparts his extensive knowledge but also
shares the passion and curiosity that mark true expertise."? ""Chris Albon,

Director of Machine Learning, The Wikimedia Foundation

"Sebastian Raschka's new book, Machine Learning Q and Al, is a one-stop
shop for overviews of crucial Al topics beyond the core covered in most
introductory courses"}If you have already stepped into the world of Al via
deep neural networks, then this book will give you what you need to locate
and understand the next level."? ""Ronald T. Kneusel, author of How Al

Works



https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | FRAERIFG AR30HE (5 il & e #ti:) | https://ningg.top/Machine-Learning-Q-and-Al/

Table of Contents

¢ |ntroduction

Part I: Neural Networks and Deep Learning

* Chapter 1: Embeddings, Latent Space, and Representations

* Chapter 2: Self-Supervised Learning

* Chapter 3: Few-Shot Learning
* Chapter 4: The Lottery Ticket Hypothesis

* Chapter 5: Reducing Overfitting with Data

* Chapter 6: Reducing Overfitting with Model Modifications

e Chapter 7: Multi-GPU Training Paradigms

* Chapter 8: The Success of Transformers

® Chapter 9: Generative Al Models

e Chapter 10: Sources of Randomness

Part Il: Computer Vision

* Chapter 11: Calculating the Number of Parameters

¢ Chapter 12: Fully Connected and Convolutional Layers

e Chapter 13: Large Training Sets for Vision Transformers

Part Ill: Natural Language Processing

¢ Chapter 14: The Distributional Hypothesis

e Chapter 15: Data Augmentation for Text

e Chapter 16: Self-Attention

e Chapter 17: Encoder- and Decoder-Style Transformers

* Chapter 18: Using and Fine-Tuning Pretrained Transformers

* Chapter 19: Evaluating Generative Large Language Models

Part IV: Production and Deployment

* Chapter 20: Stateless and Stateful Training
* Chapter 21: Data-Centric Al



https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 |

¢ Chapter 22:

KRAEIIFGAR30HE (B R & C i) I https://ningg.top/Machine-Learning-Q-and-Al/

Speeding Up Inference

¢ Chapter 23:

Data Distribution Shifts

Part V: Predictive Performance and Model
Evaluation

¢ Chapter 24:

¢ Chapter 25:

Poisson and Ordinal Regression

Confidence Intervals

¢ Chapter 26:

Confidence Intervals vs. Conformal Predictions

¢ Chapter 27:

Proper Metrics

e Chapter 28:

The k in k-Fold Cross-Validation

¢ Chapter 29:

Training and Test Set Discordance

¢ Chapter 30:

Limited Labeled Data



https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEFIR AR30HE (A& Scttide) I https://ningg top/Machine-Learning-Q-and-Al/

Introduction

Thanks to rapid advancements in deep learning, we have seen a significant

expansion of machine learning and Al in recent years.

This progress is exciting if we expect these advancements to create new
industries, transform existing ones, and improve the quality of life for people
around the world. On the other hand, the constant emergence of new techniques
can make it challenging and time-consuming to keep abreast of the latest
developments. Nonetheless, staying current is essential for professionals and

organizations that use these technologies.

| wrote this book as a resource for readers and machine learning practitioners
who want to advance their expertise in the field and learn about techniques that |
consider useful and significant but that are often overlooked in traditional and
introductory textbooks and classes. | hope you'll find this book a valuable
resource for obtaining new insights and discovering new techniques you can

implement in your work.

| Tios: mHam mome , HE, SEAH 6, BEER,

Who Is This Book For?

Navigating the world of Al and machine learning literature can often feel like
walking a tightrope, with most books positioned at either end: broad beginner's
introductions or deeply mathematical treatises. This book illustrates and
discusses important developments in these fields while staying approachable and

not requiring an advanced math or coding background.

Tips: &%, AFERKZEEESFHNEMA, BAFREBER. BEKR,
BRSSP, el BReEEE.

This book is for people with some experience with machine learning who want to
learn new concepts and techniques. It's ideal for those who have taken a beginner

course in machine learning or deep learning or have read an equivalent
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introductory book on the topic. (Throughout this book, | will use machine learning

as an umbrella term for machine learning, deep learning, and Al.)

| %, aEmnseIen an, SENSES. RESD. A,

What Will You Get Out of This Book?

This book adopts a unique Q&A style, where each brief chapter is structured
around a central question related to fundamental concepts in machine learning,
deep learning, and Al. Every question is followed by an explanation, with several
illustrations and figures, as well as exercises to test your understanding. Many
chapters also include references for further reading. These bite-sized nuggets of
information provide an enjoyable jumping-off point on your journey from

machine learning beginner to expert.

The book covers a wide range of topics. It includes new insights about established
architectures, such as convolutional networks, that allow you to utilize these
technologies more effectively. It also discusses more advanced techniques, such
as the inner workings of large language models (LLMs) and vision transformers.
Even experienced machine learning researchers and practitioners will encounter

something new to add to their arsenal of techniques.

Tips: &%, SNE AT Sl HBREBEE, MR, EFERFAREHE.
FEhERT, FTHRILAAsRIS. RHiEH.

While this book will expose you to new concepts and ideas, it's not a math or
coding book. You won't need to solve any proofs or run any code while reading. In
other words, this book is a perfect travel companion or something you can read

on your favorite reading chair with your morning coffee or tea.

How to Read This Book

Each chapter of this book is designed to be self-contained, offering you the
freedom to jump between topics as you wish. When a concept from one chapter is
explained in more detail in another, I've included chapter references you can

follow to fill in gaps in your understanding.
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ABEEINET, HRMWIUMN, RANBE—EET, HERAZRBRMNBHE
T,

However, there's a strategic sequence to the chapters. For example, the early
chapter on embeddings sets the stage for later discussions on self-supervised
learning and few-shot learning. For the easiest reading experience and the most
comprehensive grasp of the content, my recommendation is to approach the book

from start to finish.

Am, APHNET, B2F FF B, BYMSIEERE; BR, 1B SER
W, HETRAIET.,

Each chapter is accompanied by optional exercises for readers who want to test
their understanding, with an answer key located at the end of the book. In
addition, for any papers referenced in a chapter or further reading on that
chapter's topic, you can find the complete citation information in that chapter's

"References" section.

The book is structured into five main parts centered on the most important topics

in machine learning and Al today.

BIRAT, 251780, M2 AL &g B SEENTE |

Tips: TEE—84, £ #Ems Al RESS 0 #3062 , 88 BA. B
s MASS. BERE. SHNE. 3 6PUIIGERE,

Part I: Neural Networks and Deep Learning covers questions about deep neural
networks and deep learning that are not specific to a particular subdomain. For
example, we discuss alternatives to supervised learning and techniques for
reducing overfitting, which is a common problem when using machine learning

models for real-world problems where data is limited.

Chapter [ch01]: Embeddings, Latent Space, and Representations
Delves into the distinctions and similarities between embedding vectors, latent
vectors, and representations. Elucidates how these concepts help encode

information in the context of machine learning.
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Chapter [ch02]: Self-Supervised Learning
Focuses on self-supervised learning, a method that allows neural networks to

utilize large, unlabeled datasets in a supervised manner.

Chapter [ch03]: Few-Shot Learning
Introduces few-shot learning, a specialized supervised learning technique tailored

for small training datasets.

Chapter [ch04]: The Lottery Ticket Hypothesis
Explores the idea that randomly initialized neural networks contain smaller,

efficient subnetworks.

Chapter [ch05]: Reducing Overfitting with Data
Addresses the challenge of overfitting in machine learning, discussing strategies
centered on data augmentation and the use of unlabeled data to reduce

overfitting.

Chapter [ch06]: Reducing Overfitting with Model Modifications
Extends the conversation on overfitting, focusing on model-related solutions like

regularization, opting for simpler models, and ensemble techniques.

Chapter [ch07]: Multi-GPU Training Paradigms
Explains various training paradigms for multi-GPU setups to accelerate model

training, including data and model parallelism.

Chapter [ch08]: The Success of Transformers
Explores the popular transformer architecture, highlighting features like attention

mechanisms, parallelization ease, and high parameter counts.

Chapter [ch09]: Generative Al Models
Provides a comprehensive overview of deep generative models, which are used to
produce various media forms, including images, text, and audio. Discusses the

strengths and weaknesses of each model type.

Chapter [ch10]: Sources of Randomness

Addresses the various sources of randomness in the training of deep neural
networks that may lead to inconsistent and non-reproducible results during both
training and inference. While randomness can be accidental, it can also be

intentionally introduced by design.
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Tips: TEHSE 85, = itENMRE B fREE , B8 SNAENS. A%
TR,

Part 1l: Computer Vision focuses on topics mainly related to deep learning but
specific to computer vision, many of which cover convolutional neural networks

and vision transformers.

Chapter [ch11]: Calculating the Number of Parameters

Explains the

procedure for determining the parameters in a convolutional neural network,
which is useful for gauging a model's storage and memory

requirements.

Chapter [ch12]: Fully Connected and Convolutional Layers
[llustrates the circumstances in which convolutional layers can seamlessly replace
fully connected layers, which can be useful for hardware optimization or

simplifying implementations.

Chapter [ch13]: Large Training Sets for Vision Transformers
Probes the rationale behind vision transformers requiring more extensive training

sets compared to conventional convolutional neural networks.

Tips: FEESES, XAMEX, B AAESLE ) AREs , B8 55
B, HIEME. BEE. RBSBRBETRE. ERNGERIS
TS, IFEERRAES RS,

Part I1l: Natural Language Processing covers topics around working with text,

many of which are related to transformer architectures and self-attention.

Chapter [ch14]: The Distributional Hypothesis
Delves into the distributional hypothesis, a linguistic theory suggesting that words
appearing in the same contexts tend to possess similar meanings, which has

useful implications for training machine learning models.

Chapter [ch15]: Data Augmentation for Text
Highlights the significance of data augmentation for text, a technique used to
artificially increase dataset sizes, which can help with improving model

performance.

510 71, 3239
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Chapter [ch16]: Self-Attention
Introduces self-attention, a mechanism allowing each segment of a neural
network's input to refer to other parts. Self-attention is a key mechanism in

modern large language models.

Chapter [ch17]: Encoder- and Decoder-Style Transformers

Describes the nuances of encoder and decoder transformer architectures and
explains which type of architecture is most useful for each language processing
task.

Chapter [ch18]: Using and Fine-Tuning Pretrained Transformers
Explains different methods for fine-tuning pretrained large language models and

discusses their strengths and weaknesses.

Chapter [ch19]: Evaluating Generative Large Language Models
Lists prominent evaluation metrics for language models like Perplexity, BLEU,
ROUGE, and BERTScore.

Tips: TEHSEMERS, 2 £~ M & M 22 , 88 TRENERE
k. SRS HRBS.

Part IV: Production and Deployment covers questions pertaining to practical
scenarios, such as increasing inference speeds and various types of distribution
shifts.

Chapter [ch20]: Stateless and Stateful Training
Distinguishes between stateless and stateful training methodologies used in

deploying models.

Chapter [ch21]: Data-Centric Al

Explores data-centric Al, which priori-

tizes refining datasets to enhance model performance. This approach contrasts
with the conventional model-centric approach, which emphasizes improving

model architectures or methods.

Chapter [ch22]: Speeding Up Inference
Introduces techniques to enhance the speed of model inference without tweaking

the model's architecture or compromising accuracy.

11 01, 3239 111
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Chapter [ch23]: Data Distribution Shifts

Post-deployment, Al models

may face discrepancies between training data and real-world data distributions,
known as data distribution shifts. These shifts can deteriorate model performance.
This chapter categorizes and elaborates on common shifts like covariate shift,

concept drift, label shift, and domain shift.

Tips: TESAERD, & muitss M ERTE 0 AREs , 838 a0
3. BfEXE. BEXES—BEIN, RIRXWIE., IFMNHEFR K,
BRITEBIES,

Part V: Predictive Performance and Model Evaluation dives deeper into various
aspects of squeezing out predictive performance, such as changing the loss

function, setting up k-fold cross-validation, and dealing with limited labeled data.

Chapter [ch24]: Poisson and Ordinal Regression

Highlights the differences between Poisson and ordinal regression. Poisson
regression is suitable for count data that follows a Poisson distribution, like the
number of colds contracted on an airplane. In contrast, ordinal regression caters
to ordered categorical data without assuming equidistant categories, such as

disease severity.

Chapter [ch25]: Confidence Intervals

Delves into methods for constructing confidence intervals for machine learning
classifiers. Reviews the purpose of confidence intervals, discusses how they
estimate unknown population parameters, and introduces techniques such as
normal approximation intervals, bootstrapping, and retraining with various

random seeds.

Chapter [ch26]: Confidence Intervals vs. Conformal Predictions
Discusses the distinction between confidence intervals and conformal predictions
and describes the latter as a tool for creating prediction intervals that cover actual

outcomes with specific probability.

Chapter [ch27]: Proper Metrics
Focuses on the essential properties of a proper metric in mathematics and

computer science. Examines whether commonly used loss functions in machine

#1251, 239
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learning, such as mean squared error and cross-entropy loss, satisfy these

properties.

Chapter [ch28]: The kin k-Fold Cross-Validation
Explores the role of the kin k-fold cross-validation and provides insight into the

advantages and disadvantages of selecting a large k.

Chapter [ch29]: Training and Test Set Discordance

Addresses the scenario where a model performs better on a test dataset than the
training dataset. Offers strategies to discover and address discrepancies

between training and test datasets, introducing the concept of adversarial

validation.

Chapter [ch30]: Limited Labeled Data
Introduces various techniques to enhance model performance in situations where
data is limited. Covers data labeling, bootstrapping, and paradigms such as

transfer learning, active learning, and multimodal learning.

Online Resources

I've provided optional supplementary materials on GitHub with code examples for
certain chapters to enhance your learning experience (see

https://github.com/rasbt/MachineLearning-QandAl-book). These materials are

designed as practical extensions and deep dives into topics covered in the book.
You can use them alongside each chapter or explore them after reading to solidify

and expand your knowledge.

Without further ado, let's dive in.

13 71, 239

b=

M


https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEFIR AR30HE (A& Scttide) I https://ningg top/Machine-Learning-Q-and-Al/

Chapter 1: Embeddings, Latent Space,
and Representations

In deep learning, we often use the terms embedding vectors, representations,
and /atent space. What do these concepts have in common, and how do they
differ?

While these three terms are often used interchangeably, we can make subtle

distinctions between them:

e Embedding vectors are representations of input data where similar items

are close to each other.
e Latent vectors areintermediate representations of input data.
* Representations are encoded versions of the original input.

The following sections explore the relationship between embeddings, latent
vectors, and representations and how each functions to encode information in

machine learning contexts.

Embeddings

Embedding vectors, or embeddings for short, encode relatively high-dimensional

data into relatively low-dimensional vectors.

Tips: BRARE, B #A , SEWABIEN—MRTER, BUREA.
MMEERARE BuEE ; BF, BESEHE, ERARERARE.

We can apply embedding methods to create a continuous dense (non-sparse)

vector from a (sparse) one-hot encoding.

One-hot encoding is a method used to represent categorical data as binary
vectors, where each category is mapped to a vector containing 1 in the position

corresponding to the category's index, and 0 in all other positions.

514 71, 3239
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This ensures that the categorical values are represented in a way that certain
machine learning algorithms can process. For example, if we have a categorical
variable Color with three categories, Red, Green, and Blue, the one-hot encoding
would represent Red as [1, 0, 0], Green as [0, 1, 0], and Blue as [0, 0, 1]. These one-
hot encoded categorical variables can then be mapped into continuous
embedding vectors by utilizing the learned weight matrix of an embedding layer

or module.

We can also use embedding methods for dense data such as images. For example,
the last layers of a convolutional neural network may yield embedding vectors, as

illustrated in Figure 1.1 .

0 Embedding
0
S 134 - .
-0.1 npy . ol \ave

8 | 261 image Co“\,o\u\\onc
: 489 :
: 1,94 a—
1 Embedding
0 (dense) | Iﬁ‘

One-hot S

encoded ) )

input Embeddings learned by a convolutional network

(sparse)

Figure1.1

To be technically correct, all intermediate layer outputs of a neural network could
yield embedding vectors. Depending on the training objective, the output layer
may also produce useful embedding vectors. For the sake of simplicity, the

convolutional neural network in Figure 1.1

Embeddings can have higher or lower numbers of dimensions than the original
input. For instance, using embeddings methods for extreme expression, we can
encode data into two-dimensional dense and continuous representations for

visualization purposes and clustering analysis, as illustrated in Figure 1.2.
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Figure 1.2
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A fundamental property of embeddings is that they encode distance or similarity.
This means that embeddings capture the semantics of the data such that similar

inputs are close in the embeddings space.

Tips: IRA@E, BE—1"EEMMR, BI%RIS E=AEE 5 A . XE
RERAMEEERHEREUEINEN, FESHBEUMNMATERAT BRI
i, XthFRA &HRF structure-preserving 4514,

For readers interested in a more formal explanation using mathematical
terminology, an embedding isan injective and structure-preserving
map between an input space X and the embedding space Y. This implies that
similar inputs will be located at points in close proximity within the embedding
space, which can be seen as the "structure-preserving"? characteristic of the

embedding.

Tips: BRAAE, FRAZIE X FERAZEE v ZEN—T 2 RS RIFIR
5, XEWREBCEA, ERAZEPHRLIERL, XHME S0RE 15
1%,

Latent Space

Latent space is typically used synonymously with embedding space, the space

into which embedding vectors are mapped.

Similar items can appear close in the latent space; however, this is not a strict
requirement. More loosely, we can think of the latent space as any feature space
that contains features, often compressed versions of the original input features.
These latent space features can be learned by a neural network, such as an

autoencoder that reconstructs input images, as shown in Figure 1.3.

Bottleneck

. ’\D‘H

Input image Autoencoder Output image

Figure 1.3
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The bottleneck in Figure 1.3 represents a small, intermediate neural network layer
that encodes or maps the input image into a lower-dimensional representation.
We can think of the target space of this mapping as a latent space. The training
objective of the autoencoder is to reconstruct the input image, that is, to minimize
the distance between the input and output images. In order to optimize the
training objective, the autoencoder may learn to place the encoded features of
similar inputs (for example, pictures of cats) close to each other in the latent
space, thus creating useful embedding vectors where similar inputs are close in

the embedding (latent) space.

Representation

A representation is an encoded, typically intermediate form of an input. For
instance, an embedding vector or vector in the latent space is a representation of
the input, as previously discussed. However, representations can also be
produced by simpler procedures. For example, one-hot encoded vectors are

considered representations of an input.

The key idea is that the representation captures some essential features or
characteristics of the original data to make it useful for further analysis or

processing.

Tips: TRN/FRAE representation, ERAN—MRIBAN, BEEPEF
X, XESE, THBEIERAN—L AEST 3 154 , THTRED
.

Exercises

1-1. Suppose we're training a convolutional network with five convolutional layers

followed by three fully connected (FC) layers, similar to AlexNet

(https://en.wikipedia.org/wiki/AlexNet), as illustrated in Figure 1.4.

517 51, 239 BT
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1st CNN

4th CNN

layer

3rd FC layer
(output layer)

Figure 1.4

We can think of these fully connected layers as two hidden layers and an output
layer in a multilayer perceptron. Which of the neural network layers can be
utilized to produce useful embeddings? Interested readers can find more details
about the AlexNet architecture and implementation in the original publication by

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton.

1-2. Name some types of input representations that are not embeddings.

References

* The original paper describing the AlexNet architecture and implementation:
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, "ImageNet Classification
with Deep Convolutional Neural Networks"? (2012),

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-

convolutional-neural-networks.
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Chapter 2: Self-Supervised Learning

What is self-supervised learning, when is it useful, and what are the main

approaches to implementing it?

Self-supervised learning is a pretraining procedure that lets neural networks
leverage large, unlabeled datasets in a supervised fashion. This chapter compares
self-supervised learning to transfer learning, a related method for pretraining
neural networks, and discusses the practical applications of self-supervised

learning. Finally, it outlines the main categories of self-supervised learning.

Self-Supervised Learning vs. Transfer
Learning

Self-supervised learning is related to transfer learning , atechnique in which
a model pretrained on one task is reused as the starting point for a model on a
second task. For example, suppose we are interested in training an image
classifier to classify bird species. In transfer learning, we would pretrain a
convolutional neural network on the ImageNet dataset, a large, labeled image
dataset with many different categories, including various objects and animals.
After pretraining on the general ImageNet dataset, we would take that pretrained
model and train it on the smaller, more specific target dataset that contains the
bird species of interest. (Often, we just have to change the class-specific output

layer, but we can otherwise adopt the pretrained network as is.)

Figure 2.1 illustrates the process of transfer learning.
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Self-supervised learning is an alternative approach to transfer learning in which
the model is pretrained not on labeled data but on unlabeled data. We consider
an unlabeled dataset for which we do not have label information, and then we
find a way to obtain labels from the dataset's structure to formulate a prediction
task for the neural network, as illustrated in Figure 2.2. These self-supervised

training tasks are also called pretext tasks.

5520 71, 3239

b=

M


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEEFFAR30YE (JHERR& R CHEE) | https:/ningg top/Machine-Learning-Q-and-Al/

Large,
general dataset
f_/\__ﬁ

Training
examples -
Model |— Pretrained (1) Self-supervised
Extract, model pe
“make” / prefraining
i Labels :
Target-specific (2) Transfer
dataset
—
examples |~ [pretrained Final

(3) Training (fine-tuning)

model model
/ on target dataset
abels

Figure 2.2

The main difference between transfer learning and self-supervised learning lies in
how we obtain the labels during step 1 in Figures 2.1 and 2.2. In transfer learning,
we assume that the labels are provided along with the dataset; they are typically
created by human labelers. In self-supervised learning, the labels can be directly

derived from the training examples.
| Tips: B EZ>IH, WIERAORE, AT =g MIIGEET #S HE,

A self-supervised learning task could be a missing-word prediction in a natural
language processing context. For example, given the sentence "It is beautiful and
sunny outside,"? we can mask out the word sunny, feed the network the input "It
is beautiful and [MASK] outside,"? and have the network predict the missing word
in the "[MASK]"? location. Similarly, we could remove image patches in a
computer vision context and have the neural network fill in the blanks. These are
just two examples of self-supervised learning tasks; many more methods and

paradigms for this type of learning exist.

In sum, we can think of self-supervised learning on the pretext task as
representation learning. We can take the pretrained model to fine-tune it on the

target task (also known as the downstream task).

Leveraging Unlabeled Data
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Large neural network architectures require large amounts of labeled data to
perform and generalize well. However, for many problem areas, we don't have
access to large labeled datasets. With self-supervised learning, we can leverage
unlabeled data. Hence, self-supervised learning is likely to be useful when
working with large neural networks and with a limited quantity of labeled training

data.

Transformer-based architectures that form the basis of LLMs and vision
transformers are known to require self-supervised learning for pretraining to

perform well.

For small neural network models such as multilayer perceptrons with two or three
layers, self-supervised learning is typically considered neither useful nor

necessary.

Tips: 3F & NHEZNEEE, MAERI=EN Rz , B
P EXMERT ALA T TUE,

Self-supervised learning likewise isn't useful in traditional machine learning with
nonparametric models such as tree-based random forests or gradient boosting.
Conventional tree-based methods do not have a fixed parameter structure (in
contrast to the weight matrices, for example). Thus, conventional tree-based
methods are not capable of transfer learning and are incompatible with self-

supervised learning.

Tips: }F FsEs , METROUBNHFMIEERA, BEE%S 88
ER.

FANETRNAGEZXBEENSAEN (SINEREMKAL), FELESRN
ETHNAEXERITIRFEY, EIAREFEAREF

FIXME ;ZIEfi§?2?

Self-Prediction and Contrastive Self-
Supervised Learning
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There are two main categories of self-supervised learning: self-prediction
and contrastive self-supervised learning. In self-prediction, illustrated in

Figure 2.3, we typically change or hide parts of the input and train the model to

reconstruct the original inputs, such as by using a perturbation mask that

obfuscates certain pixels in an image.

Training
example X .
Predict
Perturbation
mask

Perturbed Model

example

’
—_—

Figure 2.3

A classic example is a denoising autoencoder that learns to remove noise from an
input image. Alternatively, consider a masked autoencoder that reconstructs the

missing parts of an image, as shown in Figure 2.4.

Masked pixels Embedding

Encoder Decoder
part part

Original input Model input

Model output

Convolutional
autoencoder

Figure 2.4

Missing ( masked ) input self-prediction methods are also commonly used in
natural language processing contexts. Many generative LLMs, such as GPT, are
trained on a next-word prediction pretext task (GPT will be discussed at greater

length in Chapters [ch14] and [ch17]. Here, we feed the network text fragments,

where it has to predict the next word in the sequence (as we'll discuss further in
Chapter [ch17]).

In contrastive self-supervised learning, we train the neural network to learn an
embedding space where similar inputs are close to each other and dissimilar
inputs are far apart. In other words, we train the network to produce embeddings
that minimize the distance between similar training inputs and maximize the

distance between dissimilar training examples.
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Let's discuss contrastive learning using concrete example inputs. Suppose we
have a dataset consisting of random animal images. First, we draw a random
image of a cat (the network does not know the label, because we assume that the
dataset is unlabeled). We then augment, corrupt, or perturb this cat image, such
as by adding a random noise layer and cropping it differently, as shown in Figure

2.5.

Dissimilar: Similar:
Maximize distance Minimize distance
of embedding vectors of embedding vectors
Figure 2.5

The perturbed cat image in this figure still shows the same cat, so we want the
network to produce a similar embedding vector. We also consider a random image
drawn from the training set (for example, an elephant, but again, the network

doesn't know the label).

For the cat-elephant pair, we want the network to produce dissimilar embeddings.
This way, we implicitly force the network to capture the image's core content
while being somewhat agnostic to small differences and noise. For example, the
simplest form of a contrastive loss is the Ly-norm (Euclidean distance) between
the embeddings produced by model M() Let's say we update the model
weights to decrease the distance || M (cat) — M (cat')||s and increase the
distance || M (cat) — M (elephant)||s.

Figure 2.6 summarizes the central concept behind contrastive learning for
the perturbed image scenario. The model is shown twice, which is known as a
siamese network setup. Essentially, the same model is utilized in two instances:
first, to generate the embedding for the original training example, and second, to

produce the embedding for the perturbed version of the sample.

524 51, 239 BT


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEFIR AR30HE (A& Scttide) I https://ningg top/Machine-Learning-Q-and-Al/

Training y — Model | ——— >
example
A \
Shared |
weights | Distance-based
v loss
Perturbed o o
X —> | Model | —— (Objective: Maximize similarity)
example
Embedding
vector
Figure 2.6

This example outlines the main idea behind contrastive learning, but many
subvariants exist. Broadly, we can categorize these into sample contrastive and
dimension contrastive methods. The elephant-cat example in Figure 2.6 illustrates
a sample contrastive method, where we focus on learning embeddings to
minimize and maximize distances between training pairs. In dimension-
contrastive approaches, on the other hand, we focus on making only certain
variables in the embedding representations of similar training pairs appear close

to each other while maximizing the distance of others.

Tips: 3JLE%S), AU H #axte #l #ESte mivGE,

o BEARNLE, RIETEITMAN, USME/&EANL gy ZEER,
o WEXILE, XIETEMBM gy PNRETSENT, RNSEACEMME
EMIER,

Exercises

2-1. How could we apply self-supervised learning to video data?

2-2. Can self-supervised learning be used for tabular data represented as rows and

columns? If so, how could we approach this?

References

* For more on the ImageNet dataset: https://en.wikipedia.org/wiki/ImageNet.

* An example of a contrastive self-supervised learning method: Ting Chen et al.,

"A Simple Framework for Contrastive Learning of Visual Representations"?
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(2020), https://arxiv.org/abs/2002.05709.

* An example of a dimension-contrastive method: Adrien Bardes, Jean Ponce,
and Yann LeCun, "VICRegL: Self-Supervised Learning of Local Visual Features"?

(2022), https://arxiv.org/abs/2210.01571.

* If you plan to employ self-supervised learning in practice: Randall Balestriero
et al., "A Cookbook of Self-Supervised Learning"? (2023),
https://arxiv.org/abs/2304.12210.

* A paper proposing a method of transfer learning and self-supervised learning
for relatively small multilayer perceptrons on tabular datasets: Dara Bahri et
al., "SCAREF: Self-Supervised Contrastive Learning Using Random Feature

Corruption"? (2021), https://arxiv.org/abs/2106.15147.

* A second paper proposing such a method: Roman Levin et al., "Transfer
Learning with Deep Tabular Models"? (2022), https://arxiv.org/abs/
2206.15306.
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Chapter 3: Few-Shot Learning

What is few-shot learning? How does it differ from the conventional training

procedure for supervised learning?

Few-shot learning is a type of supervised learning for small training sets with a
very small example-to-class ratio. In regular supervised learning, we train models
by iterating over a training set where the model always sees a fixed set of
classes. In few-shot learning, we are working on a support set from which we
create multiple training tasks to assemble training episodes, where each training

task consists of different classes.

Tips:

o INFERFY], ?éii?#‘/jd‘%’_-ﬂ, BN FIRIESS .
EERFNREZIH, BIBTERIGER)IGEE, RESEER
BEIEMEE,

o FEAVEARZIR, BAIM—T X% Fia, BIE s MI%ESs KAR
&S, BMIGESESTRND X,

Datasets and Terminology

In supervised learning, we fit a modelon a training dataset and evaluate it
ona test dataset . The training set typically contains a relatively large
number of examples per class. For example, in a supervised learning context, the
Iris dataset, which has 50 examples per class, is considered a tiny dataset. For
deep learning models, on the other hand, even a dataset like MNIST that has 5,000

training examples per class is considered very small.

In few-shot learning , the number of examples per class is much smaller.
When specifying the few-shot learning task, we typically use the term N-way K-

shot, where

e Vstands for the number of classes

e and K'stands for the number of examples per class.

The most common values are K= 1 or K= 5. For instance, in a 5-way 1-shot

problem, there are five classes with only one example each. Figure 3.1 depicts a 3-


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEFIR AR30HE (A& Scttide) I https://ningg top/Machine-Learning-Q-and-Al/

way 1-shot setting to illustrate the concept with a smaller example.

— 3-way 1-shot learning
(three classes, one example per class)

Training task 1

Support set Query set

_
< ;s iy 3 “\
o S, Ziia -
o L
£
c

8B

2 < Training task 2

[eIp

e
2 Support set Query set
IR TICY &
8 iimngL

Figure 3.1

Rather than fitting the model to the training dataset, we can think of few-shot
learning as "learning to learn."? In contrast to supervised learning, few-shot
learning uses not a training dataset but a so-called support set , from which

we sample training tasks that mimic the use-case scenario during prediction. With
each training task comes a query image to be classified. The model is trained on

several training tasks from the support set; this is called an episode .

Tips: JMEARZES], ATUEER FIMEES ,

S5EANSEZINE, MEEZINMERINGS, MEERMBEN X
£, MRRFINGES, RGTTNRBNERTR.

BNIIGKESBE—TEOEGEED X.
REEFRNZSTINGES LTI, ZMA —NlgeR .

FIXME??? FRIEfR

Next, during testing, the model receives a new task with classes different from
those seen during training. The classes encountered in training are also called
base classes , and the support set during training is also often called the
base set .Again, the task is to classify the query images. Test tasks are similar
to training tasks, except that none of the classes during testing overlap with those

encountered during training, as illustrated in Figure 3.2.
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As Figure 3.2 shows, the support and query sets contain different images from the
same class during training. The same is true during testing. However, notice that
the classes in the support and query sets differ from the support and query sets

encountered during training.

There are many different types of few-shot learning. In the most common, meta-
learning, training is essentially about updating the model's parameters such that
it can adapt well to a new task. On a high level, one few-shot learning strategy is
to learn a model that produces embeddings where we can find the target class via
a nearest-neighbor search among the images in the support set. Figure 3.3

illustrates this approach.

Support set
Dog Cat Bird

vES

Neural network Class: @
. model
Class: 2

Embedding Find most similar
vectors vector in support

set to predict class

Bird P
Figure 3.3

The model learns how to produce good embeddings from the support set to

classify the query image based on finding the most similar embedding vector.
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Exercises

3-1. MNIST (https://en.wikipedia.org/wiki/MNIST database) is a classic and

popular machine learning dataset consisting of 50,000 handwritten digits from 10

classes corresponding to the digits 0 to 9. How can we partition the MNIST dataset

for a one-shot classification context?

3-2. What are some real-world applications or use cases for few-shot learning?

b=
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Chapter 4: The Lottery Ticket
Hypothesis

What is the lottery ticket hypothesis, and, if it holds true, how is it useful in

practice?

The lottery ticket hypothesis is a concept in neural network training that posits
that within a randomly initialized neural network, there exists a subnetwork (or

winning ticket ?) that can, when trained separately, achieve the same
accuracy on a test set as the full network after being trained for the same number
of steps. This idea was first proposed by Jonathan Frankle and Michael Carbin in
2018.

Tips: ZEfRI& lottery ticket hypothesis , EMEZMFZIGSH, —
BEENETZ., B, EEINIRCHNMmENER, FE— FRE (5
FE ), HEMIgE, TRGARS eEMEEBERE,

This chapter illustrates the lottery hypothesis step by step, then goes over weight
pruning, one of the key techniques to create smaller subnetworks as part of the
lottery hypothesis methodology. Lastly, it discusses the practical implications and

limitations of the hypothesis.

Tips: ZERRT #ERR WIGERE, AENE RE8ER , X2 ¥ER
i® AiEEH, BIEBIFRENXEBRA, &fE, e HERR HNXZFRN
RIS,

The Lottery Ticket Training Procedure

Figure 4.1 illustrates the training procedure for the lottery ticket hypothesis in four

steps, which we'll discuss one by one to help clarify the concept.
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Figure 4.1

In Figure 4.1, we start with a large neural network that we train until

convergence , meaning we put in our best efforts to make it perform as well as
possible on a target dataset (for example, minimizing training loss and maximizing
classification accuracy). This large neural network is initialized as usual using

small random weights.

Next, as shown in Figure 4.1, we prune the neural network's weight
parameters , removing them from the network. We can do this by setting the
weights to zero to create sparse weight matrices. Here, we can either prune
individual weights, known as unstructured pruning, or prune larger "chunks"?
from the network, such as entire convolutional filter channels. This is known as

structured pruning.

Tips: EE A0S, BEF#A X, —M=2 unstructured pruning , —f2
structured pruning , I I9ZERE, unstructured pruning ¥

Bif%, M structured pruning EEME HR% .

AN
|

The original lottery hypothesis approach follows a concept known as iterative
magnitude pruning, where the weights with the lowest magnitudes are removed
in an iterative fashion. (We will revisit this concept in Chapter [ch06] when

discussing techniques to reduce overfitting.)
I Tips: IEfCBEH; iterative magnitude pruning ,

After the pruning step, we reset the weights to the original small random values

used in step 1 in Figure 4.1 and train the pruned network . It's worth emphasizing
that we do not reinitialize the pruned network with any small random weights (as
is typical for iterative magnitude pruning), and instead we reuse the weights from

step 1.
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Tips: BIfiE, BAEENENRE/EENE, FiIEFBEREHIME, 22738
TBfZ FIXME

We then repeat the pruning steps 2 through 4 until we reach the desired network
size. For example, in the original lottery ticket hypothesis paper, the authors
successfully reduced the network to 10 percent of its original size without
sacrificing classification accuracy. As a nice bonus, the pruned (sparse) network,
referred to as the winning ticket, even demonstrated improved generalization

performance compared to the original (large and dense) network.

Practical Implications and Limitations

If it's possible to identify smaller subnetworks that have the same predictive
performance as their up-to-10-times-larger counterparts, this can have significant
implications for both neural training and inference. Given the ever-growing size of
modern neural network architectures, this can help cut training costs and

infrastructure.

Tips: AR A LLRFIL S TR M E R B HERFTUEERBNF RS, XHT
MEMEN % M wE BEERINIE, FTLESE REIISHRs M 26t
IRBERAS .

Sound too good to be true? Maybe. If winning tickets can be identified efficiently,
this would be very useful in practice. However, at the time of writing, there is no
way to find the winning tickets without training the original network. Including
the pruning steps would make this even more expensive than a regular training
procedure. Moreover, after the publication of the original paper, researchers found
that the original weight initialization may not work to find winning tickets for
larger-scale networks, and additional experimentation with the initial weights of

the pruned networks is required.

The good news is that winning tickets do exist. Even if it's currently not possible
to identify them without training their larger neural network counterparts, they

can be used for more efficient inference after training.
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Exercises

4-1. Suppose we're trying out the lottery ticket hypothesis approach and find that
the performance of the subnetwork is not very good (compared to the original

network). What next steps might we try?

4-2. The simplicity and efficiency of the rectified linear unit (ReLU) activation
function have made it one of the most popular activation functions in neural
network training, particularly in deep learning, where it helps to mitigate
problems like the vanishing gradient. The ReLU activation function is defined by
the mathematical expression max(0, x). This means that if the input x is positive,
the function returns x, but if the input is negative or 0, the function returns 0. How
is the lottery ticket hypothesis related to training a neural network with ReLU

activation functions?

References

* The paper proposing the lottery ticket hypothesis: Jonathan Frankle and
Michael Carbin, "The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks"? (2018), https://arxiv.org/abs/1803.03635.

* The paper proposing structured pruning for removing larger parts, such as
entire convolutional filters, from a network: Hao Li et al., "Pruning Filters for

Efficient ConvNets"? (2016), https://arxiv.org/abs/1608.08710.

* Follow-up work on the lottery hypothesis, showing that the original weight
initialization may not work to find winning tickets for larger-scale networks,
and additional experimentation with the initial weights of the pruned
networks is required: Jonathan Frankle et al., "Linear Mode Connectivity and
the Lottery Ticket Hypothesis"? (2019), https://arxiv.org/abs/1912.05671.

* Animproved lottery ticket hypothesis algorithm that finds smaller networks
that match the performance of a larger network exactly: Vivek Ramanujan et
al., "What's Hidden in a Randomly Weighted Neural Network?"? (2020),
https://arxiv.org/abs/1911.13299.
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Chapter 5: Reducing Overfitting with
Data

Suppose we train a neural network classifier in a supervised fashion and notice
that it suffers from overfitting. What are some of the common ways to reduce

overfitting in neural networks through the use of altered or additional data?

Overfitting, a common problem in machine learning, occurs when a model fits the
training data too closely, learning its noise and outliers rather than the underlying
pattern. As a result, the model performs well on the training data but poorly on
unseen or test data. While it is ideal to prevent overfitting, it's often not possible
to completely eliminate it. Instead, we aim to reduce or minimize overfitting as

much as possible.

The most successful techniques for reducing overfitting revolve around collecting
more high-quality labeled data. However, if collecting more labeled data is not
feasible, we can augment the existing data or leverage unlabeled data for

pretraining .

Tips: @ e , REVNORARAZREETZ SRSMRSHIE 5 LI, &
AIDAMER #uimigeg 1 g FHEOR,

Common Methods

This chapter summarizes the most prominent examples of dataset-related
techniques that have stood the test of time, grouping them into the following
categories: collecting more data , data augmentation ,and

pretraining .

Collecting More Data

One of the best ways to reduce overfitting is to collect more (good-quality) data.
We can plot learning curves to find out whether a given model would benefit from
more data. To construct a learning curve, we train the model to different training
set sizes (10 percent, 20 percent, and so on) and evaluate the trained model on

the same fixed-size validation or test set. As shown in Figure 5.1, the validation
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accuracy increases as the training set sizes increase. This indicates that we can

improve the model's performance by collecting more data.

1.00
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0.98 o, ==m==\alidafion set
096 o
O guose .

_ 0.94 Teertieen g »
g Gap: overfitting
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)
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50% 100%

Training set size

Figure 5.1

The gap between training and validation performance indicates the degree of

overfitting--the more extensive the gap, the more overfitting occurs. Conversely,
the slope indicating an improvement in the validation performance suggests the
model is underfitting and can benefit from more data. Typically, additional

data can decrease both underfitting and overfitting .

Data Augmentation

Data augmentation refers to generating new data records or features based on
existing data. It allows for the expansion of a dataset without additional data

collection.

Tips: $4B183R data augmentation , B—FEHERAR, BAFIEMELE
SHARMIZHEY., BB £RIO%E , K BEUES, MAZTERING
EEURER

Data augmentation allows us to create different versions of the original input
data, which can improve the model's generalization performance. Why?
Augmented data can help the model improve its ability to generalize, since it
makes it harder to memorize spurious information via training examples or
features--or, in the case of image data, exact pixel values for specific pixel

locations.
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Figure 5.2 highlights common image data augmentation techniques, including

increasing brightness , flipping ,and cropping .

Original Increased brightness

&

Horizontal flip Crop Background removal

Figure 5.2

Data augmentation is usually standard for image data (see Figure 5.2) and text
data (discussed further in Chapter [ch15], but data augmentation methods for

tabular data also exist.

Instead of collecting more data or augmenting existing data, it is also possible to
generate new, synthetic data . While more common for image data and text,

generating synthetic data is also possible for tabular datasets.

Tips:&i#E1E38 data augmentation , EEHREBN AFLIEIIITERA.,
BRY Bumigss , ERIDA ERABBE .

Pretraining

As discussed in Chapter [ch02], self-supervised learning lets us leverage large,
unlabeled datasets to pretrain neural networks. This can also help reduce

overfitting on the smaller target datasets.
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As an alternative to self-supervised learning , traditional transfer
learning on large labeled datasets is also an option. Transfer learning is most
effective if the labeled dataset is closely related to the target domain. For
instance, if we train a model to classify bird species, we can pretrain a network on
a large, general animal classification dataset. However, if such a large animal
classification dataset is unavailable, we can also pretrain the model on the

relatively broad ImageNet dataset.

A dataset may be extremely small and unsuitable for supervised learning--for
example, if it contains only a handful of labeled examples per class. If our
classifier needs to operate in a context where the collection of additional labeled

data is not feasible, we may also consider few-shot learning .

Other Methods

The previous sections covered the main approaches to using and modifying
datasets to reduce overfitting. However, this is not an exhaustive list. Other

common techniques include:

Feature engineering and normalization

* The inclusion of adversarial examples and label or feature noise
* Label smoothing

* Smaller batch sizes

* Data augmentation techniques such as Mixup, Cutout, and CutMix

Tips: /855 IEME , ERIUERTRFTA:

o HMETRE M VF3—tt : IEHIFIDRENTENETE
o WA T AREIIEIRS ¢ RIS IRFE RIGEIEE N EEE
o MEPR  MUME, BREREMIGTMEITEE
o E/NWHEAN ¢ ERAB/\Hbatch sizeIE NI ZRRIBENL 4
o ¥uEt®eR FEOK, U Mixup . Cutout F CutMix
o Mixup @ JBEENEHFARAIEIE
o Cutout : FENLEHEIRIE D X
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| o CutMix : B—IKEBM—IBOEBRRN B —KEGHIN RIS

The next chapter covers additional techniques to reduce overfitting from a model
perspective, and it concludes by discussing which regularization techniques we

should consider in practice.

Exercises

5-1. Suppose we train an XGBoost model to classify images based on manually
extracted features obtained from collaborators. The dataset of labeled training
examples is relatively small, but fortunately, our collaborators also have a labeled
training set from an older project on a related domain. We're considering
implementing a transfer learning approach to train the XGBoost model. Is this a
feasible option? If so, how could we do it? (Assume we are allowed to use only

XGBoost and not another classification algorithm or model.)

5-2. Suppose we're working on the image classification problem of implementing
MNIST-based handwritten digit recognition. We've added a decent amount of data
augmentation to try to reduce overfitting. Unfortunately, we find that the
classification accuracy is much worse than it was before the augmentation. What

are some potential reasons for this?
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Chapter 6: Reducing Overfitting with
Model Modifications

Suppose we train a neural network classifier in a supervised fashion and
already employ various dataset-related techniques to mitigate overfitting. How
can we change the model or make modifications to the training loop to further

reduce the effect of overfitting?

The most successful approaches against overfitting include regularization
techniques like dropout and weight decay .As a rule of thumb, models with
a larger number of parameters require more training data to generalize well.
Hence, decreasing the model size and capacity can sometimes also help reduce
overfitting. Lastly, building ensemble models is among the most effective ways to

combat overfitting, but it comes with increased computational expense.

Tips: /A2 Big , ZBMEIKARZE ENk , B dropout Fl MER
w5 BEAh, ERIBA mvERA) ] iR mIEE

This chapter outlines the key ideas and techniques for several categories of
reducing overfitting with model modifications and then compares them to one
another. It concludes by discussing how to choose between all types of overfitting

reduction methods, including those discussed in the previous chapter.

Common Methods

The various model- and training-related techniques to reduce overfitting can be

grouped into three broad categories: (1) adding regularization , (2) choosing

smaller models , and (3) building ensemble models .

Regularization

We can interpret regularization as a penalty against complexity. Classic
regularization techniques for neural networks include Ly regularization and the
related weight decay method. We implement Lo regularization by adding a

penalty term to the loss function that is minimized during training. This added
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term represents the size of the weights, such as the squared sum of the weights.

The following formula shows an L2 regularized loss

. A 2
RegularizedLoss = Loss + - Z w;
j

where Aisa hyperparameter that controls the regularization strength .

During backpropagation, the optimizer minimizes the modified loss, now
including the additional penalty term, which leads to smaller model weights and

can improve generalization to unseen data.
I Tips: IEMI{t regularization , J&iZ FMEFE , FMIMEER] WE

Weight decay is similarto Lo regularization but is applied to the optimizer
directly rather than modifying the loss function. Since weight decay has the same
effect as Lo regularization, the two methods are often used synonymously, but
there may be subtle differences depending on the implementation details and

optimizer.

Many other techniques have regularizing effects. For brevity's sake, we'll discuss

just two more widely used methods: dropout and early stopping .

Dropout reduces overfitting by randomly setting some of the activations of the
hidden units to zero during training. Consequently, the neural network cannot rely
on particular neurons to be activated. Instead, it learns to use a larger number of
neurons and multiple independent representations of the same data, which helps

to reduce overfitting.

In early stopping , we monitor the model's performance on a validation set
during training and stop the training process when the performance on the

validation set begins to decline, as illustrated in Figure 6.1.

Tips: B{& early stopping , 1Bid MiniEEI7EI0TEE LaottaE , RS IEIIG
JUE -
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; Good early stopping point
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SN _ — -7 set
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Q
o
2
U . .
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set

Number of training iterations or epochs

Figure 6.1

In Figure 6.1, we can see that the validation accuracy increases as the training and

validation accuracy gap closes. The point where the training and validation
accuracy is closest is the point with the least amount of overfitting, which is

usually a good point for early stopping.

Smaller Models

Classic bias-variance theory suggests that reducing model size can reduce
overfitting. The intuition behind this theory is that, as a general rule of thumb, the
smaller the number of model parameters, the smaller its capacity to memorize or
overfit to noise in the data. The following paragraphs discuss methods to reduce
the model size, including pruning , which removes parameters from a model,

and knowledge distillation , which transfers knowledge to a smaller model.
| ips: mvERAD, @I mE A mirmE

Besides reducing the number of layers and shrinking the layers' widths as a
hyperparameter tuning procedure, another approach to obtaining smaller models
is iterative pruning ,in which we train a large model to achieve good
performance on the original dataset. We then iteratively remove parameters of the
model, retraining it on the dataset such that it maintains the same predictive
performance as the original model. (The lottery ticket hypothesis, discussed in

Chapter [ch04], uses iterative pruning.)

Tips: IERMMEENSH, SEEHNEE, EEN #REk , bEER
hik.
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Another common approach to obtaining smaller models is knowledge distillation.
The general idea behind this approach is to transfer knowledge from a large, more
complex model (the teacher) to a smaller model (the student). Ideally, the student
achieves the same predictive accuracy as the teacher, but it does so more
efficiently due to the smaller size. As a nice side effect, the smaller student may

overfit less than the larger teacher model.

Figure 6.2 diagrams the original knowledge distillation process. Here, the

teacher s first trained in a regular supervised fashion to classify the examples

in the dataset well, using a conventional cross-entropy loss between the predicted

scores and ground truth class labels. While the smaller student network is

trained on the same dataset, the training objective is to minimize both
(a) the cross entropy between the outputs and the class labels and

(b) the difference between its outputs and the teacher outputs (measured using
Kullback-Leibler divergence, which quantifies the difference between two
probability distributions by calculating how much one distribution diverges from

the other in terms of information content).

(1) Train teacher model to achieve high classification accuracy

Class labels 4—{ Minimize crossentropy loss }—l
) Teacher
a7 —
f — ——p¢
s gr— - —

Probability
scores Predicted
ﬂ_’ ("soft targets”) | ™ | class labels

Minimize difference loss
(Kullback-Leibler divergence)

(QH Minimize cross-enfropy loss (E’)

Student

_»E’robcbilify scores} . [Predicted }

(“soft targets”) class labels

(2) Train student model on same dataset to minimize combined loss
consisting of (a) cross-entropy and (b) Kullback-Leibler divergence

Figure 6.2

By minimizing the Kullback-Leibler divergence--the difference between the teacher
and student score distributions--the student learns to mimic the teacher while

being smaller and more efficient.

.

Tips: #1iRZ%%8 knowledge distillation , BT ISAAMAER | &
B ovER | RIRES/IVERIAYMEE,

Caveats with Smaller Models
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While pruning and knowledge distillation can also enhance a model's
generalization performance, these techniques are not primary or effective ways of

reducing overfitting.

Tips: B#% 1 MiRZFB , T RSKRBENZHIERE, B 72 BOITUE
B £E Hik,

Early research results indicate that pruning and knowledge distillation can
improve the generalization performance, presumably due to smaller model sizes.
However, counterintuitively, recent research studying phenomena like double
descent and grokking also showed that larger, overparameterized models have
improved generalization performance if they are trained beyond the point of
overfitting. Double descent refers to the phenomenon in which models with
either a small or an extremely large number of parameters have good
generalization performance, while models with a number of parameters equal to
the number of training data points have poor generalization performance.
Grokking reveals that as the size of a dataset decreases, the need for optimization
increases, and generalization performance can improve well past the point of

overfitting.

Tips: MFE double descent , =—fMlR, KRRSHNNE, ERES
KzafzE, MEEZAMR, #HETE, B, FBIW/HIE grokking
Mm%, BRESERSHMSBAN, ZHMEXSTIF, 22?7 FIXME

How can we reconcile the observation that pruned models can exhibit better
generalization performance with contradictory observations from studies of
double descent and grokking? Researchers recently showed that the improved
training process partly explains the reduction of overfitting due to pruning.
Pruning involves more extended training periods and a replay of learning rate
schedules that may be partly responsible for the improved generalization

performance.

Pruning and knowledge distillation remain excellent ways to improve the
computational efficiency of a model. However, while they can also enhance a
model's generalization performance, these techniques are not primary or effective

ways of reducing overfitting.
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Tips: IR FNFIRZEE, FILARSIREMZAMRE, BRRFNTUSHE
EhiE.

Ensemble Methods

Ensemble methods combine predictions from multiple models to improve the
overall prediction performance. However, the downside of using multiple models

is an increased computational cost.

We can think of ensemble methods as asking a committee of experts to weigh in
on a decision and then combining their judgments in some way to make a final
decision. Members in a committee often have different backgrounds and
experiences. While they tend to agree on basic decisions, they can overrule bad
decisions by majority rule. This doesn't mean that the majority of experts is
always right, but there is a good chance that the majority of the committee is

more often right, on average, than every single member.

The most basic example of an ensemble method is majority voting. Here, we train
k different classifiers and collect the predicted class label from each of these k

models for a given input. We then return the most frequent class label as the final
prediction. (Ties are usually resolved using a confidence score, randomly picking a

label, or picking the class label with the lowest index.)

Ensemble methods are more prevalent in classical machine learning than deep
learning because it is more computationally expensive to employ multiple models
than to rely on a single one. In other words, deep neural networks require
significant computational resources, making them less suitable for ensemble

methods.

Random forests and gradient boosting are popular examples of ensemble
methods. However, by using majority voting or stacking, for example, we can
combine any group of models: an ensemble may consist of a support vector
machine, a multilayer perceptron, and a nearest-neighbor classifier. Here, stacking
(also known as stacked generalization)is a more advanced variant of majority
voting that involves training a new model to combine the predictions of several

other models rather than obtaining the label by majorit yvote.

A popular industry technique is to build models from k-fold cross-validation, a

model evaluationt echnique in which we train and evaluate a model on k training
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folds.We then compute the average performance metric across all k iterations to
estimate the overall performance measure of the model. After evaluation, we can
either train the model on the entire training dataset or combine the individual

models as an ensemble, as shown in Figure 6.2.

| Training dataset |

Validation fold p— I l I | s
Training fold — — ] | >
| [ I [ | —>
—— E———
[—— ——
(a) Common approach: (b) Ensemble approach:
Train model on whole Use models via majority
training dataset vote or stacking
| Training dataset ]
Final model
Figure 6.3

As shown in Figure 6.2, the k-fold ensemble approach trains each of the kK models
on the respective k"" 1 training folds in each round. After evaluating the models
on the validation folds, we can combine them into a majority vote classifier or
build an ensemble using stacking, a technique that combines multiple

classification or regression models via a meta-model.

While the ensemble approach can potentially reduce overfitting and improve
robustness, this approach is not always suitable. For instance, potential
downsides include managing and deploying an ensemble of models, which can be

more complex and computationally expensive than using a single model.

Other Methods

So far, this book has covered some of the most prominent techniques to reduce
overfitting. Chapter [ch05] covered techniques that aim to reduce overfitting from
a data perspective. Additional techniques for reducing overfitting with model
modifications include skip-connections (found in residual networks, for example),
look-ahead optimizers, stochastic weight averaging, multitask learning, and

snapshot ensembles.
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While they are not originally designed to reduce overfitting, layer input
normalization techniques such as batch normalization (BatchNorm) and layer
normalization (LayerNorm) can stabilize training and often have a regularizing
effect that reduces overfitting. Weight normalization, which normalizes the model
weights instead of layer inputs, could also lead to better generalization
performance. However, this effect is less direct since weight normalization

(WeightNorm) doesn't explicitly act as a regularizer like weight decay does.

Choosing a Regularization Technique

Improving data quality is an essential first step in reducing overfitting. However,
for recent deep neural networks with large numbers of parameters, we need to do
more to achieve an acceptable level of overfitting. Therefore, data augmentation
and pretraining, along with established techniques such as dropout and weight

decay, remain crucial overfitting reduction methods.

In practice, we can and should use multiple methods at once to reduce overfitting
for an additive effect. To achieve the best results, treat selecting these techniques

as a hyperparameter optimization problem.

Exercises

6-1. Supposewe'reusingearlystoppingasamechanismtoreduceover- fitting--
inparticular,amodernearly-stoppingvariantthatcreates checkpoints of the best
model (for instance, the model with the high- est validation accuracy) during
training so that we can load it after the training has completed. This mechanism
can be enabled in most modern deep learning frameworks. However, a colleague
recommends tuning the number of training epochs instead. What are some of the

advantages and disadvantages of each approach?

6-2. Ensemble models have been established as a reliable and successful method
for decreasing overfitting and enhancing the reliability of predictive modeling
efforts. However, there's always a trade-off. What are some of the drawbacks

associated with ensemble techniques?
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Chapter 7: Multi-GPU Training
Paradigms

What are the different multi-GPU training paradigms, and what are their

respective advantages and disadvantages?

Multi-GPU training paradigms can be categorized into two groups: dividing data
for parallel processing with multiple GPUs and dividing the model among multiple
GPUs to handle memory constraints when the model size surpasses that of a
single GPU. Data parallelism falls into the first category, while model parallelism
and tensor parallelism fall into the second category. Techniques like pipeline
parallelism borrow ideas from both categories. In addition, current software
implementations such as DeepSpeed, Colossal Al, and others blend multiple

approaches into a hybrid technique.

This chapter introduces several training paradigms and provides advice on which

to use in practice.

This chapter primarily uses the term GPUs to describe the hardware utilized for
parallel processing. However, the same concepts and techniques discussed can be
applied to other specialized hardware devices, such as tensor processing units
(TPUs) or other accelerators, depending on the specific architecture and

requirements of the system.

The Training Paradigms

The following sections discuss the model parallelism, data parallelism, tensor

parallelism, and sequence parallelism multi-GPU training paradigms.

Model Parallelism

Model parallelism, or inter-op parallelism, is a technique in which different
sections of a large model are placed on different GPUs and are computed
sequentially, with intermediate results passed between the devices. This allows

for the training and execution of models that might not fit entirely on a single
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device, but it can require intricate coordination to manage the dependencies

between different parts of the model.

Model parallelism is perhaps the most intuitive form of parallelization across

devices. For example, for a simple neural network that consists of only two

layers""a hidden layer and an output layer""we can keep one layer on one GPU
and the other layer on another GPU. Of course, this can scale to an arbitrary

number of layers and GPUs.

This is a good strategy for dealing with limited GPU memory where the complete
network does not fit into one GPU. However, there are more efficient ways of
using multiple GPUs, such as tensor parallelism, because the chain-like structure
(layer 1 on GPU 1 — layer 2 on GPU 2 — ...) in model parallelism introduces a
bottleneck. In other words, a major disadvantage of model parallelism is that the
GPUs have to wait for each other. They cannot efficiently work in parallel, as they

depend on one other's outputs.

Data Parallelism

Data parallelism has been the default mode for multi-GPU training for several
years. Here, we divide a minibatch into smaller microbatches. Each GPU then
processes a microbatch separately to compute the loss and loss gradients for the
model weights. After the individual devices process the microbatches, the

gradients are combined to compute the weight update for the next round.

An advantage of data parallelism over model parallelism is that the GPUs can run
in parallel. Each GPU processes a portion of the training minibatch, that is, a

microbatch. However, a caveat is that each GPU requires a full copy of the model.
This is obviously not feasible if we have large models that don't fit into the GPU's

VRAM.

Tensor Parallelism

Tensor parallelism, or intra-op parallelism, is a more efficient form of model
parallelism. Here, the weight and activation matrices are spread across the
devices instead of distributing whole layers across devices: the individual matrices

are split, so we split an individual matrix multiplication across GPUs.

b=
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We can implement tensor parallelism using basic principles of linear algebra; we
can split a matrix multiplication across two GPUs in a row- or column-wise
fashion, as illustrated in Figure 7.1 for two GPUs. (This concept can be extended to

an arbitrary number of GPUs.)

Matrix multiplication on a single GPU
GPU 1
Inputs Outputs
23] .
alsie * HH - e

7 ™~

Weights

Split the matrix multiplication by column Split the matrix multiplication by row
GPU 1
Colncotencte
a - columns ‘I‘ x -
5
GPU 2 GPU 2
8- E 518 ~ A -
[4]5]6] = 964 ["Concatenate
O BE rows
Figure 7.1

Like model parallelism, tensor parallelism allows us to work around memory
limitations. At the same time, it also lets us execute operations in parallel, similar

to data parallelism.

A small weakness of tensor parallelism is that it can result in high communication
overhead between the multiple GPUs across which the matrices are split or
sharded. For instance, tensor parallelism requires frequent synchronization of the

model parameters across devices, which can slow down the overall training

process.

Figure 7.2 compares model, data, and tensor parallelism.

Model parallelism

Data parallelism

Batch of __|
input data

GPU 2 has to wait until GPU 1 finishes

Tensor parallelism

Model has to fit
onto a single GPU

Weights are sharded across GPUs

Figure 7.2
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In model parallelism, we put different layers onto different GPUs to work around
GPU memory limitations. In data parallelism, we split a batch across GPUs to train
copies of the model in parallel, averaging gradients for the weight update
afterward. In tensor parallelism, we split matrices (inputs and weights) across
different GPUs for parallel processing when models are too large to fit into GPU

memory.

Pipeline Parallelism

In pipeline parallelism, activations are passed during the forward pass, as in
model parallelism. The twist is that the gradients of the input tensor are passed
backward to prevent the devices from being idle. In a sense, pipeline parallelism

is a sophisticated hybrid version of data and model parallelism.

We can think of pipeline parallelism as a form of model parallelism that tries to
minimize the sequential computation bottleneck, enhancing the parallelism
between the individual layers sitting on different devices. However, pipeline
parallelism also borrows ideas from data parallelism, such as splitting minibatches

further into microbatches.

Pipeline parallelism is definitely an improvement over model parallelism, though
it is not perfect and there will be idle bubbles. A further disadvantage of pipeline
parallelism is that it may require significant effort to design and implement the
pipeline stages and associated communication patterns. Additionally, the
performance gains it generates may not be as substantial as those from other
parallelization techniques, such as pure data parallelism, especially for small

models or in cases where the communication overhead is high.

For modern architectures that are too large to fit into GPU memory, it is more
common nowadays to use a blend of data parallelism and tensor parallelism

techniques instead of pipeline parallelism.

Sequence Parallelism

Sequence parallelism aims to address computational bottlenecks when working
with long sequences using transformer-based LLMs. More specifically, one
shortcoming of transformers is that the self-attention mechanism (the original

scaled-dot product attention) scales quadratically with the input sequence length.
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There are, of course, more efficient alternatives to the original attention

mechanism that scale linearly.

However, these efficient self-attention mechanisms are less popular, and most
people still prefer the original scaled-dot product attention mechanism as of this
writing. Sequence parallelism, illustrated in Figure 7.3, splits the input sequence
into smaller chunks to be distributed across GPUs, which aims to reduce

computation memory constraints of self-attention mechanisms.

This

is

Thisis  ~
sequence Communication

parallelism” \

sequence

parallelism

Figure 7.3

How does sequence parallelism relate to the multi-GPU techniques discussed
earlier? Sequence parallelism deals specifically with sequential data, tensor
parallelism deals with the model's internal structure, and data parallelism deals
with how the training data is divided. Theoretically, since each of these
parallelism strategies addresses a different aspect of the computational challenge,
they can thus be combined in various ways to optimize the training or inference
process. Sequence parallelism is not as well studied as other parallelization

techniques, however.

While sequence parallelism appears useful in practice, it also introduces
additional communication overheads similar to the aforementioned parallelism
techniques. Like data parallelism, it requires us to duplicate the model and make
sure it fits into the device memory. Another of its disadvantages (depending on
the implementation) for multi-GPU training of transformers is that breaking up the
input sequence into smaller subsequences can decrease the model's accuracy

(mainly when the model is applied to longer sequences).
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Recommendations

Practical recommendations depend on the context. If we train small models that
fit onto a single GPU, then data parallelism strategies may be the most efficient.
Performance gains from pipeline parallelism may not be as significant as those
from other parallelization techniques, such as data parallelism, especially for

small models or in cases where the communication overhead is high.

If models are too large to fit into the memory of a single GPU, we need to explore
model or tensor parallelism. Tensor parallelism is naturally moreefficient; the
GPUs can work in parallel since there is no sequential dependency as in model

parallelism.

Modern multi-GPU strategies also typically combine data parallelism and tensor

parallelism.

Exercises

7-1. Suppose we are implementing our own version of tensor parallelism, which
works great when we train our model with a standard stochastic gradient descent
optimizer. However, when we try the Adam optimizer by Diederik P. Kingma and
Jimmy Ba, we encounter an out-of-memory device. What problem might explain

this issue?

7-2. Suppose we don't have access to a GPU and are considering using data

parallelism on the CPU. Is this a good idea?

References

* The original paper on the Adam optimizer: Diederik P. Kingma and Jimmy Ba,
"Adam: A Method for Stochastic Optimization"? (2014),
https://arxiv.org/abs/1412.6980.

* FormoreonDeepSpeedandColossal-Alformulti-GPUtraining:

https://github.com/microsoft/DeepSpeed and

https://github.com/hpcaitech/ColossalAl.
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* Pipeline parallelism tutorials and research by the DeepSpeed team:

https://www.deepspeed.ai/tutorials/pipeline and Yanping Huang et al.,

"GPipe: Efficient Training of Giant Neural Networks Using Pipeline
Parallelism"? (2018), https://arxiv.org/abs/1811.06965.

* The paper proposing sequence parallelism for transformer-based language
models: Shenggui Li et al., "Sequence Parallelism: Long Sequence Training

from [a] System(s] Perspective"? (2022), https://arxiv.org/abs/2105.13120.

* The scaled-dot product attention mechanism was proposed with the original
transformer architecture: Ashish Vaswani et al., "Attention Is All You Need"?
(2017), https://arxiv.org/abs/1706.03762.

* A survey covering alternatives to the original self-attention mechanism that
scale linearly: Yi Tay et al., "Efficient Transformers: A Survey"? (2020),
https://arxiv.org/abs/2009.06732.

* A survey covering additional techniques to improve the training efficiency of
transformers: Bohan Zhuang et al., "A Survey on Efficient Training of

Transformers"? (2023), https://arxiv.org/abs/2302.01107.

* Modern multi-GPU strategies typically combine data parallelism and tensor
parallelism. Popular examples include DeepSpeed stages 2 and 3, described in
this tutorial on the zero redundancy optimizer:

https://www.deepspeed.ai/tutorials/zero/.
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Chapter 8: The Success of
Transformers

What are the main factors that have contributed to the success of transformers?

In recent years, transformers have emerged as the most successful neural network
architecture, particularly for various natural language processing tasks. In fact,

transformers are now on the cusp of becoming state of the art for computer vision
tasks as well. The success of transformers can be attributed to several key factors,
including their attention mechanisms , ability to be parallelized easily ,

unsupervised pretraining ,and high parameter counts .

Tips:

o ERNNE, FEEREAJUXTIEMARINFNEES D, NMRSE
A%RE

o REFITH, MMRSIIFERE,

o BB, EF/EEAINUMBAARETMENE, MMRESERM

s SEHHE, EFREYUFIEEERIKE, MMESKREIEEE,

The Attention Mechanism

The self-attention mechanism found in transformers is one of the key design
components that make transformer-based LLMs so successful. However,

transformers are not the first architecture to utilize attention mechanismes.

Attention mechanisms were first developed in the context of image recognition
back in 2010, before being adopted to aid the translation of long sentences in
recurrent neural networks. (Chapter [ch16] compares the attention mechanisms

found in recurrent neural networks and transformers in greater detail.)

The aforementioned attention mechanism is inspired by human vision, focusing
on specific parts of an image (foveal glimpses) at a time to process information
hierarchically and sequentially. In contrast, the fundamental mechanism
underlying transformers is a self-attention mechanism used for sequence-to-

sequence tasks, such as machine translation and text generation. It allows each
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token in a sequence to attend to all other tokens, thus providing context-aware

representations of each token.

Tips: AEMRE RS, EﬁFﬂ‘ﬂE’] FRFEINEEERD ( foveal
glimpses HRMFM), AEZELZXIFNEZHD(A 28 M HFE A
ABER),

o AEML: BERA— 7f¥ HEBERED, BESEESZAD
e TransformerBFE 1 B8 NI EE"EE U"’ﬂ?qﬂﬁ’ﬂﬁﬁﬁﬁﬁﬂiﬂ, )
TYXHR

What makes attention mechanisms so unique and useful? For the following
illustration, suppose we are using an encoder network on a fixed-length
representation of the input sequence or image -- this can be a fully connected,

convolutional, or attention-based encoder.

Tips: FIXME, F2NNERNER? ? ? EARTRBNIUERRXK? TEM

= token?

e TxTransformerd, wiGHEABEBANE, HTES i AtokentH S F
IR E MtokenIEE M, MMIHEESEHAFIIFEXED

o &L, 535:E"7J$TL%|JJ‘?,¥F Transformers<EF 5 EGHARER S

o REL, XEFRIFFEMUT 2%ER , HPETMHRATESET—
RV TRV E &R .

o ARNNFIA, HEFENNELREEBTRATESMBEEMTE
HITEERR .

o BERXMAERGINIENNER o5 19, HEMKBTEA.

o HHtEZ T, ERMATERBEMINETIIIGEE BE , WFigure 8.1F7

No

In a transformer, the encoder uses self-attention mechanisms to compute the
importance of each input token relative to other tokens in the sequence, allowing
the model to focus on relevant parts of the input sequence. Conceptually,
attention mechanisms allow the transformers to attend to different parts of a
sequence or image. On the surface, this sounds very similar to a fully connected
layer where each input element is connected via a weight with the input element

in the next layer. In attention mechanisms, the computation of the attention
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weights involves comparing each input element to all others. The attention
weights obtained by this approach are dynamic and input dependent. In contrast,

the weights of a convolutional or fully connected layer are fixed after training, as

illustrated in Figure 8.1.

Fully connected layer weights w are static with respect to the input

Inputs Inputs .
(example 1) (example 2) m “
Wis=0.5 w,,
Outputs Outputs :
(example 1) fexample 2 I N

(Weights for other output tokens not shown)

Attention scores a are dynamic with respect to the input

Inputs Inputs
(example 1) (example 2)

Outputs Outputs

(example 1) (example 2) “

(Weights for other output tokens not shown)

Figure 8.1

As the top part of Figure 8.1 shows, once trained, the weights of fully connected
layers remain fixed regardless of the input. In contrast, as shown at the bottom,

self-attention weights change depending on the inputs, even after a transformer is

trained.

Tips:
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Attention mechanisms allow a neural network to selectively weigh the importance
of different input features, so the model can focus on the mostrelevant parts of
the input for a given task. This provides a contextual understanding of each word
or image token, allowing for more nuanced interpretations, which is one of the

aspects that can make transformers work so well.

Pretraining via Self-Supervised Learning
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Tips:
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Pretraining transformers via self-supervised learning on large, unlabeled datasets
is another key factor in the success of transformers. During pretraining, the
transformer model is trained to predict missing words in a sentence or the next
sentence in a document, for example. By learning to predict these missing words
or the next sentence, the model is forced to learn general representations of

language that can be fine-tuned for a wide range of downstream tasks.

While unsupervised pretraining has been highly effective for natural language
processing tasks, its effectiveness for computer vision tasks is still an active area
of research. (Refer to Chapter [ch02] for a more detailed discussion of self-

supervised learning.)

Large Numbers of Parameters

One noteworthy characteristic of transformers is their large model sizes. For
example, the popular 2020 GPT-3 model consists of 175 billion trainable
parameters, while other transformers, such as switch transformers, have trillions

of parameters.

The scale and number of trainable parameters of transformers are essential
factors in their modeling performance, particularly for large-scale natural
language processing tasks. For instance, linear scaling laws suggest that
the training loss decreases proportionally with an increase in model size, so a

doubling of the model size can halve the training loss.

This, in turn, can lead to better performance on the downstream target task.
However, it is essential to scale the model size and the number of training tokens
equally. This means the number of training tokens should be doubled for every

doubling of model size.
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Since labeled data is limited, utilizing large amounts of data during unsupervised

pretraining is vital.

To summarize, large model sizes and large datasets are critical factors in
transformers' success. Additionally, using self-supervised learning, the ability to
pretrain transformers is closely tied to using large model sizes and large datasets.
This combination has been critical in enabling the success of transformers in a

wide range of natural language processing tasks.

Tips: BMESZ, TransformerfJpkL, RAEE LVATHTFH A8 f AH
& BEM,

o LMAEMER: MRS EEANMKIELL, FEUEEINEEA/NAT LR,
DINERIR .

o JllZxtokensEE : llZktokensBNEN XS RE A/ NERIELL, ELEIEINE
BUR/NRZIB NI ZRtokens B E .

Easy Parallelization

Training large models on large datasets requires vast computational

resources , and it's key that the computations can be parallelized to utilize these

resources.

Fortunately, transformers are easy to parallelize since they take a fixed-length
sequence of word or image tokens as input. For instance, the self-attention
mechanism used in most transformer architectures involves computing the
weighted sum between a pair of input elements. Furthermore, these pair-wise
token comparisons can be computed independently, as illustrated in Figure 8.2,
making the self-attention mechanism relatively easy to parallelize across different

GPU cores.
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Input token 2

[D][E][F]

The dot products can
be computed in parallel

Input sequences:

Input token 1
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Input token T E\ n

3D token Dot product
embedding vector

Figure 8.2

In addition, the individual weight matrices used in the self-attention mechanism
(not shown in Figure 8.2) can be distributed across different machines for

distributed and parallel computing.

Exercises

8-1. As discussed in this chapter, self-attention is easily parallelizable, yet
transformers are considered computationally expensive due to self-attention. How

can we explain this contradiction?

8-2. Since self-attention scores represent importance weights for the various input

elements, can we consider self-attention to be a form of feature selection?

References

* An example of an attention mechanism in the context of image rec- ognition:
Hugo Larochelle and Geoffrey Hinton, "Learning to Combine Foveal Glimpses
with a Third-Order Boltzmann Machine"? (2010),
https://dl.acm.org/doi/10.5555/2997189.2997328.

* The paper introducing the self-attention mechanism with the original
transformer architecture: Ashish Vaswani et al., "Attention Is All You Need"?
(2017), https://arxiv.org/abs/1706.03762.

* Transformers can have trillions of parameters: William Fedus, Barret Zoph, and
Noam Shazeer, "Switch Transformers: Scaling to Trillion Parameter Models

with Simple and Efficient Sparsity"? (2021), https://arxiv.org/abs/2101.03961.
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* Linear scaling laws suggest that training loss decreases proportionally with an
increase in model size: Jared Kaplan et al., "Scaling Laws for Neural Language
Models"? (2020), https://arxiv.org/abs/2001.08361.

* Research suggests that in transformer-based language models, the training
tokens should be doubled for every doubling of model size: Jordan Hoffmann
et al., "Training Compute-Optimal Large Language Models"? (2022),
https://arxiv.org/abs/2203.15556.

* Formoreabouttheweightsusedinself-attentionandcross-attention mechanisms,
check out my blog post: "Understanding and Coding the Self-Attention
Mechanism of Large Language Models from Scratch"? at

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html.
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Chapter 9: Generative Al Models

What are the popular categories of deep generative models in deep learning

(also called generative Al), and what are their respective downsides?

Many different types of deep generative models have been applied to generating
different types of media: images, videos, text, and audio. Beyond these types of
media, models can also be repurposed to generate domain-specific data, such as
organic molecules and protein structures. This chapter will first define generative
modeling and then outline each type of generative model and discuss its

strengths and weaknesses.

Generative vs. Discriminative Modeling

In traditional machine learning, there are two primary approaches to modeling
the relationship between input data (x) and output labels ()): generative

models and discriminative models .

* Generative models aim to capture the underlying probability distribution
of the input data p(x) or the joint distribution p(x, y) between inputs and

labels.

* Incontrast, discriminative models focus on modeling the conditional

distribution p(y | x) of the labels given the inputs.

A classic example that highlights the differences between these approaches is to

compare the naive Bayes classifier andthe logistic regression

classifier .

* Both classifiers estimate the class label probabilities p(y | x) and can be used
for classification tasks.

e However, logistic regression is considered a discriminative model
because it directly models the conditional probability distribution p(y | x) of
the class labels given the input features without making assumptions about
the underlying joint distribution of inputs and labels.

* Naive Bayes , on the other hand, is considered a generative model because
it models the joint probability distribution p(x, y) of the input features x and

the output labels y. By learning the joint distribution, a generative model like
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naive Bayes captures the underlying data generation process, which enables it

to generate new samples from the distribution if needed.

Tips:

o NIHHEDE:S, RIRMANGEL ZBEFEREMES M, ALY
B, ANEREMREE;

o BEEIADESE, RIWANBLZEFEFRERES M, TEELEMH
RO

Types of Deep Generative Models

When we speak of deep generative models or deep generative Al, we often loosen
this definition to include all types of models capable of producing realistic-looking
data (typically text, images, videos, and sound). The remainder of this chapter
briefly discusses the different types of deep generative models used to generate

such data.

Energy-Based Models

Energy-based models (EBMs) are a class of generative models that learn an energy
function, which assigns a scalar value (energy) to each data point. Lower energy
values correspond to more likely data points. The model is trained to minimize
the energy of real data points while increasing the energy of generated data

points.

Examples of EBMs include deep Boltzmann machines (DBMs) .

One of the early breakthroughs in deep learning, DBMs provide a means to learn
complex representations of data. You can think of them as a form of unsupervised

pretraining, resulting in models that can then be fine-tuned for various tasks.

Somewhat similar to naive Bayes and logistic regression, DBMs and multilayer
perceptrons (MLPs) can be thought of as generative and discriminative
counterparts, with DBMs focusing on capturing the data generation process and
MLPs focusing on modeling the decision boundary between classes or mapping

inputs to outputs.
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A DBM consists of multiple layers of hidden nodes, as shown in Figure 9.1. As the
figure illustrates, along with the hidden layers, there's usually a visible layer that
corresponds to the observable data. This visible layer serves as the input layer
where the actual data or features are fed into the network. In addition to using a
different learning algorithm than MLPs (contrastive divergence instead of
backpropagation), DBMs consist of binary nodes (neurons) instead of continuous

ones.

Hidden nodes

N %

Visible nodes
Figure 9.1

Suppose we are interested in generating images. A DBM can learn the joint
probability distribution over the pixel values in a simple image dataset like MNIST.
To generate new images, the DBM then samples from this distribution by
performing a process called Gibbs sampling. Here, the visible layer of the DBM
represents the input image. To generate a new image, the DBM starts by
initializing the visible layer with random values or, alternatively, uses an existing
image as a seed. Then, after completing several Gibbs sampling iterations, the

final state of the visible layer represents the generated image.

DBMs played an important historical role as one of the first deep generative
models, but they are no longer very popular for generating data. They are
expensive and more complicated to train, and they have lower expressivity
compared to the newer models described in the following sections, which

generally results in lower-quality generated samples.

Variational Autoencoders
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Variational autoencoders (VAEs) are built upon the principles of variational
inference and autoencoder architectures. Variational inference is a method for
approximating complex probability distributions by optimizing a simpler, tractable
distribution to be as close as possible to the true distribution. Autoencoders are
unsupervised neural networks that learn to compress input data into a low-
dimensional representation (encoding) and subsequently reconstruct the original
data from the compressed representation (decoding) by minimizing the

reconstruction error.

The VAE model consists of two main submodules: an encoder network and a
decoder network. The encoder network takes, for example, an input image and
maps it to a latent space by learning a probability distribution over the latent
variables. This distribution is typically modeled as a Gaussian with parameters
(mean and variance) that are functions of the inputimage. The decoder network
then takes a sample from the learned latent distribution and reconstructs the
input image from this sample. The goal of the VAE is to learn a compact and
expressive latent representation that captures the essential structure of the input
data while being able to generate new images by sampling from the latent space.

(See Chapter [ch01] for more details on latent representations.)

Figure 9.2 illustrates the encoder and decoder submodules of an auto-encoder,
where ' represents the reconstructed input x. In a standard variational
autoencoder, the latent vector is sampled from a distribution that approximates a

standard Gaussian distribution.

z |— el — | X

Latent vector
Figure 9.2

Training a VAE involves optimizing the model's parameters to minimize a loss
function composed of two terms: a reconstruction loss and a Kullback -- Leibler-
divergence (KL-divergence) regularization term. The reconstruction loss ensures
that the decoded samples closely resemble the input images, while the KL-
divergence term acts as a surrogate loss that encourages the learned latent
distribution to be close to a predefined prior distribution (usually a standard

Gaussian). To generate new images, we then sample points from the latent
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space's prior (standard Gaussian) distribution and pass them through the decoder
network, which generates new, diverse images that look similar to the training
data.

Disadvantages of VAEs include their complicated loss function consisting of
separate terms, as well as their often low expressiveness. The latter can result in
blurrier images compared to other models, such as generative adversarial

networks.

Generative Adversarial Networks

Generative adversarial networks (GANs) are models consisting of interacting
subnetworks designed to generate new data samples that are similar to a given
set of input data. While both GANs and VAEs are latent variable models that
generate data by sampling from a learned latent space, their architectures and

learning mechanisms are fundamentally different.

GANSs consist of two neural networks, a generator and a discriminator, that are
trained simultaneously in an adversarial manner. The generator takes a random
noise vector from the latent space as input and generates a synthetic data sample
(such as an image). The discriminator's task is to distinguish between real
samples from the training data and fake samples generated by the generator, as

illustrated in Figure 9.3.

z |— REEEEE® — | x' | — MBS 8 — Real/generated

Input vector
(sampled) Generated data

x | — BEeinee | — Real/generated

Training example
("real”)

Figure 9.3

The generator in a GAN somewhat resembles the decoder of a VAE in terms of its
functionality. During inference, both GAN generators and VAE decoders take
random noise vectors sampled from a known distribution (for example, a standard

Gaussian) and transform them into synthetic data samples, such as images.
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One significant disadvantage of GANs is their unstable training due to the
adversarial nature of the loss function and learning process. Balancing the
learning rates of the generator and discriminator can be difficult and can often
result in oscillations, mode collapse, or non-convergence. The second main
disadvantage of GANs is the low diversity of their generated outputs, often due to
mode collapse. Here, the generator is able to fool the discriminator successfully
with a small set of samples, which are representative of only a small subset of the

original training data.

Flow-Based Models

The core concept of flow-based models, also known as normalizing flows, is
inspired by long-standing methods in statistics. The primary goal is to transform a
simple probability distribution (like a Gaussian) into a more complex one using

invertible transformations.

Although the concept of normalizing flows has been apart of the statistics
field for a long time, the implementation of early flow-based deep learning
models, particularly for image generation, is a relatively recent development. One
of the pioneering models in this area was the non-linear independent components
estimation (NICE) approach. NICE begins with a simple probability distribution,
often something straightforward like a normal distribution. You can think of this
as a kind of "random noise,"? or data with no particular shape or structure. NICE
then applies a series of transformations to this simple distribution. Each
transformation is designed to make the datalook more like the final target (for
instance, the distribution of real-world images). These transformations are
"invertible,"? meaning we can always reverse them back to the original simple
distribution. After several successive transformations, the simple distribution has
morphed into a complex distribution that closely matches the distribution of the
target data (such as images). We can now generate new data that looks like the

target data by picking random points from this complex distribution.

Figure 9.4 illustrates the concept of a flow-based model, which maps the complex

input distribution to a simpler distribution and back.
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Latent vector
Figure 9.4

At first glance, the illustration is very similar to the VAE illustration in Figure 9.2.
However, while VAEs use neural network encoders like convolutional neural
networks, the flow-based model uses simpler decoupling layers, such as simple
linear transformations. Additionally, while the decoder in a VAE is independent of
the encoder, the data-transforming functions in the flow-based model are

mathematically inverted to obtain the outputs.

Unlike VAEs and GANs, flow-based models provide exact likelihoods, which gives
us insights into how well the generated samples fit the training data distribution.
This can be useful in anomaly detection or density estimation, for example.
However, the quality of flow-based models for generating image data is usually
lower than GANs. Flow-based models also often require more memory and
computational resources than GANs or VAEs since they must store and compute

inverses of transformations.

Autoregressive Models

Autoregressive models are designed to predict the next value based on current
(and past) values. LLMs for text generation, like ChatGPT (discussed further in

Chapter [ch17]), are one popular example of this type of model.

Similar to generating one word at a time, in the context of image generation,
autoregressive models like PixelCNN try to predict one pixel at a time, given the
pixels they have seen so far. Such a model might predict pixels from top left to

bottom right, in a raster scan order, or in any other defined order.

To illustrate how autoregressive models generate an image one pixel at a time,
suppose we have an image of size H x I/ (where H is the height and I/is the
width), ignoring the color channel for simplicity's sake. This image consists of N

pixels, where 2 = 1, ..., IN. The probability of observing a particular image in
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the dataset is then P(I'mage) = P(iy,1s,...,%y). Basedon the chain rule of
probability in statistics, we can decompose this joint probability into conditional
probabilities:

P(Image) = P (i1,12,...,iN)
=P (i) - P(iz]|t1)  P(ig]i1,82) ... P(in | %1-.-in_1)

Here, P (1) is the probability of the first pixel, P(i3|i1) is the probability of the
second pixel given the first pixel, P(i3|i1, i2) is the probability of the third pixel
given the first and second pixels, and so on.

In the context of image generation, an autoregressive model essentially tries to

predict one pixel at a time, as described earlier, given the pixels it has seen so far.

Figure 9.5 illustrates this process, where pixels 21, . . . , 153 represent the context

and pixel 254 is the next pixel to be generated.

54

Figure 9.5

The advantage of autoregressive models is that the next-pixel (or word) prediction
is relatively straightforward and interpretable. In addition, auto- regressive
models can compute the likelihood of data exactly, similar to flow-based models,

which can be useful for tasks like anomaly detection. Furthermore, autoregressive

#7200, 4239 51


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEEFFAR30YE (JHERR& R CHEE) | https:/ningg top/Machine-Learning-Q-and-Al/

models are easier to train than GANs as they don't suffer from issues like mode

collapse and other training instabilities.

However, autoregressive models can be slow at generating new samples. This is
because they have to generate data one step at a time (for example, pixel by pixel
for images), which can be computationally expensive. Autoregressive models may
also struggle to capture long-range dependencies because each output is

conditioned only on previously generated outputs.

In terms of overall image quality, autoregressive models are therefore usually

worse than GANs but are easier to train.

Diffusion Models

As discussed in the previous section, flow-based models transform a simple
distribution (such as a standard normal distribution) into a complex one (the
target distribution) by applying a sequence of invertible and differentiable
transformations (flows). Like flow-based models, diffusion models alsoapply a
series of transformations. However, the underlying concept is fundamentally
different.

Diffusion models transform the input data distribution into a simple noise
distribution over a series of steps using stochastic differential equations. Diffusion
is a stochastic process in which noise is progressively added to the data until it
resembles a simpler distribution, like Gaussian noise. To generate new samples,

the process is then reversed, starting from noise and progressively removing it.

Figure 9.6 outlines the process of adding and removing Gaussian noise from an
input image x. During inference, the reverse diffusion process is used to generate a
new image x, starting with the noise tensor zrn sampled from a Gaussian

distribution.
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Figure 9.6
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While both diffusion models and flow-based models are generative models aiming
to learn complex data distributions, they approach the problem from different
angles. Flow-based models use deterministic invertible transformations, while

diffusion models use the aforementioned stochastic diffusion process.

Recent projects have established state-of-the-art performance in generating high-
quality images with realistic details and textures. Diffusion models are also easier
to train than GANs. The downside of diffusion models, however, is that they are
slower to sample from since they require running a series of sequential steps,
similar to flow-based models and autoregressive models. This can make diffusion

models less practical for some applications requiring fast sampling.

Consistency Models

Consistency models train a neural network to map a noisy image to a clean one.
The network is trained on a dataset of pairs of noisy and clean images and learns
to identify patterns in the clean images that are modified by noise. Once the
network is trained, it can be used to generate reconstructed images from noisy

images in one step.

Consistency model training employs an ordinary differential equation (ODE)

trajectory, a path that a noisy image follows as it is gradually denoised. The ODE
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trajectory is defined by a set of differential equations that describe how the noise

in the image changes over time, as illustrated in Figure 9.7.

data Probability flow ODE
Figure 9.7

As Figure 9.7 demonstrates, we can think of consistency models as models that
learn to map any point from a probability flow ODE, which smoothly converts data

to noise, to the input.

At the time of writing, consistency models are the most recent type of generative
Al model. Based on the original paper proposing this method, consistency models
rival diffusion models in terms of image quality. Consistency models are also
faster than diffusion models because they do not require an iterative process to

generate images; instead, they generate images in a single step.

However, while consistency models allow for faster inference, they are still
expensive to train because they require a large dataset of pairs of noisy and clean

images.

Recommendations

Deep Boltzmann machines are interesting from a historical perspective since they
were one of the pioneering models to effectively demonstrate the concept of
unsupervised learning. Flow-based and autoregressive models may be useful
when you need to estimate exact likelihoods. However, other models are usually

the first choice when it comes to generating high-quality images.

In particular, VAEs and GANs have competed for years to generate the best high-
fidelity images. However, in 2022, diffusion models began to take over image
generation almost entirely. Consistency models are a promising alternative to
diffusion models, but it remains to be seen whether they become more widely

adopted to generate state-of-the-art results. The trade-off here is that sampling
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from diffusion models is generally slower since it involves a sequence of noise-
removal steps that must be run in order, similar to autoregressive models. This
can make diffusion models less practical for some applications requiring fast

sampling.

Exercises

9-1. How would we evaluate the quality of the images generated by a generative

Al model?

9-2. Given this chapter's description of consistency models, how would we use

them to generate new images?
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Chapter 10: Sources of Randomness

What are the common sources of randomness when training deep neural
networks that can cause non-reproducible behavior during training and

inference?

When training or using machine learning models such as deep neural networks,
several sources of randomness can lead to different results every time we train or
run these models, even though we use the same overall settings. Some of these
effects are accidental and some are intended. The following sections categorize

and discuss these various sources of randomness.

Tips:

o FUGMERNSFZEIEEN, IREHZNE, HBIESSEER
% o BT RENSEAENGR, BMERINERBENEE.
o XLEFEHIERIRER B2 B9, tBAIEER & M.

Optional hands-on examples for most of these categories are provided in the
supplementary/q10-random-sources subfolder at

https://github.com/rasbt/MachineLearning-QandAl-book.

Model Weight Initialization

All common deep neural network frameworks, including TensorFlow and PyTorch,
randomly initialize the weights and bias units at each layer by default. This means
that the final model will be different every time we start the training. The reason
these trained models will differ when we start with different random weights is
the nonconvex nature of the loss, as illustrated in Figure 10.1. As the figure shows,
the loss will converge to different local minima depending on where the initial

starting weights are located.

| Tips: MAKANE, SEBTFRNBIHRMARE.
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Initial starting weight

Final weight value

Loss

Loss

w
Figure 10.1

In practice, it is therefore recommended to run the training (if the computational
resources permit) at least a handful of times; unlucky initial weights can
sometimes cause the model not to converge or to converge to a local minimum

corresponding to poorer predictive accuracy.

Tips: LB, BiX Z2 &B1T R , NBRAFEHNRNE, S
RS REN DR,

However, we can make the random weight initialization deterministic by seeding
the random generator. For instance, if we set the seed to a specific value like 123,
the weights will still initialize with small random values. Nonetheless, the neural
network will consistently initialize with the same small random weights, enabling

accurate reproduction of results.

| Tips: BITIRE WNMT , TTLAMES Mt NESHE wew .

Dataset Sampling and Shuffling

When we train and evaluate machine learning models, we usually start by dividing

a dataset into training and test sets. This requires random sampling since we have
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to decide which examples we put into a training set and which examples we put

into a test set.

In practice, we often use model evaluation techniques such as kfold cross-
validation or holdout validation. In holdout validation, we split the training set
into training , validation ,and test datasets, which are also sampling
procedures influenced by randomness. Similarly, unless we use a fixed random
seed, we get a different model each time we partition the dataset or tune or
evaluate the model using k-fold cross-validation since the training partitions will
differ.

o FUGAMIHEN R IRENT, BNVEEREEED N IFE . R
& s .

o XFBE WIRE , RARMNDIRERMEFRBAIGE, ML
FESR, MPLERNMNRE.

o FRIEFAVERBEERIFENIF, SR D BIERIER k RN
IERS, BAIHREEIRERIRE,

Nondeterministic Algorithms

We may include random components and algorithms depending on the

architecture and hyperparameter choices. A popular example of this is dropout.

Dropout works by randomly setting a fraction of a layer's units to zero during
training, which helps the model learn more robust and generalized
representations. This "dropping out" is typically applied at each training iteration
with a probability p, a hyperparameter that controls the fraction of units dropped

out. Typical values for p are in the range of 0.2 to 0.8.

To illustrate this concept, Figure 10.2 shows a small neural network where
dropout randomly drops a subset of the hidden layer nodes in each forward pass

during training.
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£

Input layer  Hidden layer ~ Output layer

Figure 10.2

To create reproducible training runs, we must seed the random generator before
training with dropout (analogous to seeding the random generator before
initializing the model weights). During inference, we need to disable dropout to
guarantee deterministic results. Each deep learning framework has a specific
setting for that purpose -- a PyTorch example is included in the
supplementary/q10-random-sources subfolder at

https://github.com/rasbt/MachineLearning-QandAl-book.

Tips:

o NTRIEFEMNIGEIT, BMNDAEIIGaNZEBIMF CEUTF
VAR BN E Z BTR B FEAF) .

o TEIIERY, BMNFBEZRH dropout , URIEERNEEM.,

s BPAREZRIERBBERENIRE, UEXMX—R,

Different Runtime Algorithms

The most intuitive or simplest implementation of an algorithm or method is not
always the best one to use in practice. For example, when training deep neural
networks, we often use efficient alternatives and approximations to gain speed

and resource advantages during training and inference.

A popular example is the convolution operation used in convolutional neural
networks. There are several possible ways to implement the convolution

operation:

The classic direct convolution The common implementation of discrete

convolution via an element-wise product between the input and the window,
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followed by summing the result to get a single number. (See Chapter [ch12] for a

discussion of the convolution operation.)

FFT-based convolution Uses fast Fourier transform (FFT) to convert the

convolution into an element-wise multiplication in the frequency domain.

Winograd-based convolution An efficient algorithm for small filter sizes (like

3 X 3 that reduces the number of multiplications required for the convolution.

Different convolution algorithms have different trade-offs in terms of memory
usage, computational complexity, and speed. By default, libraries such as the
CUDA Deep Neural Network library ( cuDNN ), which are used in PyTorch and
TensorFlow, can choose different algorithms for performing convolution
operations when running deep neural networks on GPUs. However, the
deterministic algorithm choice has to be explicitly enabled. In PyTorch, for

example, this can be done by setting

torch.use_deterministic_algorithms(True)

While these approximations yield similar results, subtle numerical differences can
accumulate during training and cause the training to converge to slightly different

local minima.

Tips: BiZEH SthaFHFREENE, FANEFRMAEEIM, TEFFHM
B R

o FEMBREZET wir A, HEERE M &8 HEBARNNG,

o ZIANBIRT, PyTorchflTensorFlowZ5ZEHAJ CUDA Deep Neural
Network library ( cubNN ) BILAMHEREIMEAFIATETIRIE,

« B2, BEMEENERELIENER.

e TEPyTorchd, AIDLEITIRE
torch.use_deterministic_algorithms(True) RXERMBEMEE.

Hardware and Drivers
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Training deep neural networks on different hardware can also produce different
results due to small numeric differences, even when the same algorithms are used
and the same operations are executed. These differences may sometimes be due
to different numeric precision for floating-point operations. However, small
numeric differences may also arise due to hardware and software optimization,

even at the same precision.

Tips: BB EZHRMENE, HFHIEFEEGTS, FRMMARE, &
EMAAEESTI, FEFENMIEELERR,

o FEK BiEwE , RSHRRNER.
o TEM B A B i, SSBARNER.

For instance, different hardware platforms may have specialized optimizations or
libraries that can slightly alter the behavior of deep learning algorithms. To give
one example of how different GPUs can produce different modeling results, the
following is a quotation from the official NVIDIA documentation: "Across different
architectures, no cuDNN routines guarantee bit-wise reproducibility. For example,
there is no guarantee of bit-wise reproducibility when comparing the same
routine run on NVIDIA Volta™ and NVIDIA Turing™ [.. ] and NVIDIA

Ampere architecture."?

Tips:

o AERVEHTFErEERBEIIMMASE, JUEMSEREZIEE
HOMERE,
o BlE0, AERIGPURILAF=ERFNEELS

Randomness and Generative Al

Besides the various sources of randomness mentioned earlier, certain models may
also exhibit random behavior during inference that we can think of as
"randomness by design."? For instance, generative image and language models
may create different results for identical prompts to produce a diverse sample of
results. For image models, this is often so that users can select the most accurate
and aesthetically pleasing image. For language models, this is often to vary the

responses, for example, in chat agents, to avoid repetition.
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Tips:

. B?TFJUIJ_ETE:EtUE’\JﬁﬂﬁL*J-L‘EE;Eﬁ, F LS AU AT D P] AEZR I L0 AL
78, FATATLCREAL Y it EAIBEHLIE” .
o flal, ERAEGNESREIEZNBRNRERTEFTENER, U
FESHENERER,
o WTEGRE, i_l_“%*x%?gTit)ﬂFiﬁ?%%)&ﬁﬁ%ﬂ%W%l}\E’ﬂ1%0
s TIESEE, XEEENTEHREE, HINEHRAER,

The intended randomness in generative image models during inference is often
due to sampling different noise values at each step of the reverse process. In
diffusion models, a noise schedule defines the noise variance added at each step

of the diffusion process.

Tips:

o FEEMVEGREG, HEBERAMEE, BEEHETERBIERIAR
ERY IRFEE HITRE.
o YV BUREIR, BREBEE EXT AT BUIEFIRIEY

Autoregressive LLMs like GPT tend to create different outputs for the same input

prompt (GPT will be discussed at greater length in Chapters [ch14] and [ch17]).

The ChatGPT user interface even has a Regenerate Response button for that
purpose. The ability to generate different results is due to the sampling strategies
these models employ. Techniques such as top-k sampling, nucleus sampling, and
temperature scaling influence the model's output by controlling the degree of
randomness. This is a feature, not a bug, since it allows for diverse responses and
prevents the model from producing overly deterministic or repetitive outputs.
(See Chapter [ch09] for a more in-depth overview of generative Al and deep

learning models; see Chapter [ch17] for more detail on autoregressive LLMs.)

Tips:

o BOVIESHEE (WGPT) i@ TNERNBART, FEFRNE
.

o XERAXLRE, RATARERY KR .

o BIAN, top-*k*Ri¥ . AREE M BEMN FHOK, BITIETHIREALIERE
B, SImMEENEE,
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Top-[k]{.upright} sampling, illustrated in Figure 10.3, works by sampling tokens

from the top k most probable candidates at each step of the next-word generation

process.

....................

Select | walk 3 | Renormalize walke—

top k_» | stroll o
!.I_/movieD e
(\\o\ o

|
\_‘\0 grocery []
SV\tlIJI‘rI:I'I E‘ Randomly sample
bike 0 next token
proportional
Vocabulary to token probabilities

Figure 10.3

Given an input prompt, the language model produces a probability distribution
over the entire vocabulary (the candidate words) for the next token. Each token in
the vocabulary is assigned a probability based on the model's understanding of

the context. The selected top-k tokens are then renormalized so that the

probabilities sum to 1. Finally, a token is sampled from the renormalized top-k
probability distribution and is appended to the input prompt. This process is

repeated for the desired length of the generated text or until a stop condition is

met.

Nucleus sampling (also known as top-p sampling), illustrated in Figure 10.4, is an

alternative to top-k sampling.

Select top candidates such that
cumulative probability reaches p

i runE ' run
select . wake3 i Renomlize wak
candidates : ' : '

1] i Jsholl B3|
=SHE_ movie CIiy movie L
N & & © grocery [ :
fun O E d | |
swim [ : Randomly sample
bike 0 next token

proportional
Vocabulary  p= 09 to token probabilities

Figure 10.4

Similar to top-k sampling, the goal of nucleus sampling is to balance diversity and

coherence in the output. However, nucleus and top-k sampling differ in how to
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select the candidate tokens for sampling at each step of the generation process.
Top-k sampling selects the k most probable tokens from the probability
distribution produced by the language model, regardless of their probabilities.
The value of k remains fixed throughout the generation process. Nucleus
sampling, on the other hand, selects tokens based on a probability threshold p, as
shown in Figure 10.4. It then accumulates the most probable tokens in
descending order until their cumulative probability meets or exceeds the
threshold p. In contrast to top-k sampling, the size of the candidate set (nucleus)

can vary at each step.

Tips:

o Stop-kRIFXRM, HRFNBEIREFEREPNSHFENERE,

o AT, ZRFMtop- CRIFEIREZFEE N ERSREPNRIZITICHBRA
CiP

o top-IRIF* MBS RETERIMED o tIFE HESS A TIRIT, T
R RIE 2It0BRERE pitiFARIC,

Exercises

10-1. Suppose we train a neural network with top-k or nucleus sampling where k
and p are hyperparameter choices. Can we make the model behave

deterministically during inference without changing the code?

10-2. In what scenarios might random dropout behavior during inference be

desired?

References

* For more about different data sampling and model evaluation techniques, see
my article: "Model Evaluation, Model Selection, and Algorithm Selection in

Machine Learning"? (2018), https://arxiv.org/abs/1811.12808.

* The paper that originally proposed the dropout technique: Nitish

Srivastavaetal.,"Dropout:ASimpleWaytoPreventNeuralNet- works from

Overfitting"? (2014), https://jmlr.org/papers/v15/sriva staval4a.html.

5 86 71, 239

b=

M


https://arxiv.org/abs/1811.12808
https://jmlr.org/papers/v15/srivastava14a.html
https://jmlr.org/papers/v15/srivastava14a.html
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | FRAERIFG AR30HE (5 il & e #ti:) | https://ningg.top/Machine-Learning-Q-and-Al/

* A detailed paper on FFT-based convolution: Lu Chi, Borui Jiang, and Yadong
Mu, "Fast Fourier Convolution"? (2020),
https://dl.acm.org/doi/abs/10.5555/3495724.3496100.
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* For details on the deterministic behavior of NVIDIA graphics cards, see the
"Reproducibility"? section of the official NVIDIA documentation:

https://docs.nvidia.com/deeplearning/cudnn/developer-

guide/index.html#reproducibility.
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Chapter 11: Calculating the Number
of Parameters

How do we compute the number of parameters in a convolutional neural

network, and why is this information useful?

Knowing the number of parameters in a model helps gauge the model's size,
which affects storage and memory requirements. The following sections will

explain how to compute the convolutional and fully connected layer parameter

counts.

Tips: RESHNNE, BHEREX/) (FHEZEARX) NWEEER, B
TEEMBENEFMEZE, ERXE #RE M 28R .

How to Find Parameter Counts

Suppose we are working with a convolutional network that has two

convolutional layers with kernel size 5 and kernel size 3, respectively.

* The first convolutional layer has 3 input channels and 5 output channels,
* and the second one has 5 input channels and 12 output channels.

* The stride of these convolutional layers is 1.
Furthermore, the network has two pooling layers ,

e one with a kernel size of 3 and a stride of 2,

e and another with a kernel size of 5 and a stride of 2.

It also hastwo fully connected hidden layers with 192 and 128 hidden

units each, where the output layerisa classification layer for 10 classes.

The architecture of this network is illustrated in Figure 11.1.

b=
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Fully connected layer
Convolutional layer 2 * 192 inputs
Convolutional layer 1 * 5 input channels ® 128 outputs

® 3 input channels * 12 output channels Output layer

® 5 output channels ® Kernel size 3 ® 128 inputs

® Kernel size 5 * 10 outputs

~
3@32x32 5@28x28 | 5@ 12x12 ~NE——
12 @ 10x10

12 @ 4x4

Max poolin: .
. KeF:ne| Sge 5 Average P°_°|'”9 Reshape/flatten
o Stride 2 o Kernel size 3

192

o Stride 2

Figure 11.1

What is the number of trainable parameters in this convolutional network? We can
approach this problem from left to right, computing the number of parameters for
each layer and then summing up these counts to obtain the total number of
parameters. Each layer's number of trainable parameters consists of weights and

bias units.

Convolutional Layers

Ina convolutional layer ,the number of weights depends on the kernel's
width and height and the number of input and output channels. The number of
bias units depends on the number of output channels only. To illustrate the
computation step by step, suppose we have a kernel width and height of 5, one

input channel, and one output channel, as illustrated in Figure 11.2.

Tips: BEMBHSHBE, BURT R (kerne)IEE, BE. MNEE
N5 BERN,

Kernel size 5

One input channel
Output “pixel” in
the output channel
Figure 11.2
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In this case, we have 26 parameters, since we have 5 X 5 = 25 weights via the
kernel plus the bias unit. The computation to determine an output value or pixel
zisz=>b+ Zj w;;, where T ; represents an input pixel, w; represents a

weight parameter of the kernel, and b is the bias unit.

I Tips: — 1" &% kernel HIBEIZE, weights = RE xSE,

it

Now, suppose we have three input channels, as illustrated in Figure 11.3.

Kernel size 5

Three input channels

Figure 11.3

In that case, we compute the output value by performing the aforementioned
operation, Zj w;x;j, for each input channel and then add the bias unit. For
three input channels, this would involve three different kernels with three sets of

weights:
2= wy wi D w e+ we +b
J J J

Since we have three sets of weights (WM, w®), andw® for j = [1,25]), we
have 3 X 25 + 1 = 76 parameters in this convolutional layer.

I Tips: BTRIANBE, WUEIERZ kernel , HEIMIMISE.

We use one kernel for each output channel, where each kernel is unique to a
given output channel. Thus, if we extend the number of output channels from one
to five, as shown in Figure 11.4, we extend the number of parameters by a factor
of 5.

In other words, if the kernel for one output channel has 76 parameters, the 5
kernels required for the five output channels will have 5 X 76 = 380

parameters.
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Kernel size 5 Five output channels

Figure 11.4

Returning to the neural network architecture illustrated in Figure 11.1 at the
beginning of this section, we compute the number of parameters in the
convolutional layers based on the kernel size and number of input and output
channels. For example, the first convolutional layer has three input channels, five

output channels, and a kernel size of 5. Thus, its number of parameters is & X

(5 x5x3)+5=380.

The second convolutional layer, with five input channels, 12 output channels, and
a kernel size of 3, has 12 X (3 x 3 x 5) + 12 = 552 parameters.

Since the pooling layers do not have any trainable parameters, we can count

380 + 552 = 932 for the convolutional part of this architecture.

Next, let's see how we can compute the number of parameters of fully connected

layers.

Fully Connected Layers

Counting the number of parametersina fully connected layer is relatively
straightforward. A fully connected node connects each input node to each output
node, so the number of weights is the number of inputs times the number of
outputs plus the bias units added to the output. For example, if we have a fully
connected layer with five inputs and three outputs, as shown in Figure 11.5, we

have 5 X 3 = 15 weights and three bias units, that is, 18 parameters total.

Tips: — N E2%EEER fully connected layer BISE(E, weights =i
ATEE x W=,
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Bias

Outputs

Inputs

Figure 11.5

Returning once more to the neural network architecture illustrated in Figure 11.1,
we can now calculate the parameters in the fully connected layers as follows:
192 x 128 4 128 = 24, 704 in the first fully connected layer and 128 X

10 + 10 = 1, 290 in the second fully connected layer, the output layer.

Hence, we have 24,704 + 1,290 = 25,994 in the fully connected part of this

network.

After adding the 932 parameters from the convolutional layers and the 25,994
parameters from the fully connected layers, we can conclude that this network's

total number of parameters is 26, 926.

As a bonus, interested readers can find PyTorch code to compute the number of

parameters programmatically in the supplementary/q11-conv-size subfolder at
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https://github.com/rasbt/MachineLearning-QandAl-book.

Practical Applications

Why do we care about the number of parameters at all? First, we can use this
number to estimate a model's complexity. As a rule of thumb, the more

parameters there are, the more training data we'll need to train the model well.

Tips: IRE! simge , BEERE sxE NWEERER, BTHEMHBLN
NEFEIEE -

The number of parameters also lets us estimate the size of the neural network,
which in turn helps us estimate whether the network can fit into GPU memory.
Although the memory requirement during training often exceeds the model size
due to the additional memory required for carrying out matrix multiplications and
storing gradients, model size gives us a ballpark sense of whether training the

model on a given hardware setup is feasible.

Tips: BEISHIENE, BHERE A NEEER, ATFHEREESEE
fit Z 6PU M) WE .,

Exercises

11-1. Suppose we want to optimize the neural network using a plain stochastic
gradient descent (SGD) optimizer or the popular Adam optimizer. What are the

respective numbers of parameters that need to be stored for SGD and Adam?

11-2. Suppose we're adding three batch normalization (BatchNorm) layers: one
after the first convolutional layer, one after the second convolutional layer, and
another one after the first fully connected layer (we typically do not want to add
BatchNorm layers to the output layer). How many additional parameters do these

three BatchNorm layers add to the model?
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Chapter 12: Fully Connected and
Convolutional Layers

Under which circumstances can we replace fully connected layers with

convolutional layers to perform the same computation?

Replacing fully connected layers with convolutional layers can offer advantages in
terms of hardware optimization, such as by utilizing specialized hardware
accelerators for convolution operations. This can be particularly relevant for edge

devices.

Tips: #RE 8 2%EE , B THKE

o ETRERILA mhnE
o XTE n#igE LIEFEXEE,

There are exactly two scenarios in which fully connected layers and convolutional
layers are equivalent: when the size of the convolutional filter is equal to the size
of the receptive field and when the size of the convolutional filter is 1. As an
illustration of these two scenarios, consider a fully connected layer with two input

and four output units, as shown in Figure 12.1.

Tips: 2%EE fl #RE ERMBERLTE M /Y

o I BRZ NKRNFT BEH HIAN,
o 3 BRZ BR/NA 1.

receptive field EZEF, £ CNN FIRNN F, EFRENE X,

o EBIMMEZMLE (CNN) B, RZFRIENEZREMTERNME TR
ANBG MBI (BEEE), ER =8 42 LR,

o f£ BRIMHRLZMLE (RNN) R, RZIFE Mg 4E LTS, E@ENE
HRPRSTERT B L R/FEEEME ZmABmAER.
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Wix + b,

1

W;rx + b,

Figure 12.1

The fully connected layer in this figure consists of eight weights and two bias

units. We can compute the output nodes via the following dot products:
Node 1

w11 X T1 + w12 X T2 + w13 X T3+ wia X T4 + by
Node 2

Wy X T1 + Wao X Ty + Wa3 X Ty + Wy X Tg + by

The following two sections illustrate scenarios in which convolutional layers can
be defined to produce exactly the same computation as the fully connected layer

described.

When the Kernel and Input Sizes Are Equal

Let's start with the first scenario, where the size of the convolutional filter is equal
to the size of the receptive field. Recall from Chapter [ch11] how we compute a
number of parameters in a convolutional kernel with one input channel and
multiple output channels. We have a kernel size of 2 X 2, one input channel, and
two output channels. The input size is also 2 X 2, a reshaped version of the four

inputs depicted in Figure 12.2.
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Convolutional

Two 2x2
X . wo operator
convolutional kernels

\
W, x x + b,

W, x + b,
X
‘ . Two output channels

Figure 12.2

If the convolutional kernel dimensions equal the input size, as depicted in Figure
12.2, there is no sliding window mechanism in the convolutional layer. For the

first output channel, we have the following set of weights:

w w
W, = [ 1,1 1,2]

w13 Wig

For the second output channel, we have the following set of weights:

W, = [w2,1 w2,2]

Wy 3 Wa4

If the inputs are organized as

xr =
L3 Tg
we calculate the first output channel as 0, = Y _.(W; X ;) + by, where the
convolutional operator * is equal to an element-wise multiplication. In other
words, we perform an element-wise multiplication between two matrices, W7
and x, and then compute the output as the sum over these elements; this equals

the dot product in the fully connected layer. Lastly, we add the bias unit. The

computation for the second output channel works analogously: 02 =

Zz(Wg X ZL‘Z) + bg.

As a bonus, the supplementary materials for this book include PyTorch code to
show this equivalence with a hands-on example in the supplementary/q12-fc-
cnn-equivalence subfolder at https://github.com/rasbt/MachineLearning-
QandAl-book.
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When the Kernel Sizels 1

The second scenario assumes that we reshape the input into an input "image"?
with 1 X 1 dimensions where the number of "color channels"? equals the

number of input features, as depicted in Figure 12.3.

Two 1x1 convolutional
X . kernels with four channels
X W «x+b
z . Reshape ! ‘
—_— —_—
% @
W, x + b,
X
4 . Two output channels
Inputs
Figure 12.3

Each kernel consists of a stack of weights equal to the number of input channels.

For instance, for the first output layer, the weights are

W, = [wgl) w?) wg?’) w§4)}
while the weights for the second channel are:

Wy = [wgl) wg) wgg) wé‘ﬂ

To get a better intuitive understanding of this computation, check out the
illustrations in Chapter [ch11], which describe how to compute the parameters in

a convolutional layer.

Recommendations

The fact that fully connected layers can be implemented as equivalent
convolutional layers does not have immediate performance or other advantages
on standard computers. However, replacing fully connected layers with
convolutional layers can offer advantages in combination with developing

specialized hardware accelerators for convolution operations.

Moreover, understanding the scenarios where fully connected layers are

equivalent to convolutional layers aids in understanding the mechanics of these
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layers. It also lets us implement convolutional neural networks without any use of

fully connected layers, if desired, to simplify code implementations.
Tips: #—F, EIF R M 2R NFME, BFEITEBEXLERN
il

LEsh, MRFE, HAFAIATHMERWENE, MAERTAEERE, M
ELAEsEH,

Exercises

12-1. How would increasing the stride affect the equivalence discussed in this

chapter?

12-2. Does padding affect the equivalence between fully connected layers and

convolutional layers?
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Chapter 13: Large Training Sets for
Vision Transformers

Why do vision transformers (ViTs) generally require larger training sets than

convolutional neural networks (CNNs)?

Each machine learning algorithm and model encodes a particular set of
assumptions or prior knowledge, commonly referred to as inductive biases, in its
design. Some inductive biases are workarounds to make algorithms
computationally more feasible, other inductive biases are based on domain

knowledge, and some inductive biases are both.

CNNs and ViTs can be used for the same tasks, including image classification,
object detection, and image segmentation. CNNs are mainly composed of
convolutional layers, while ViTs consist primarily of multi-head attention blocks
(discussed in Chapter [ch08] in the context of transformers for natural language

inputs).

CNNs have more inductive biases that are hardcoded as part of the algorithmic
design, so they generally require less training data than ViTs. In a sense, ViTs are
given more degrees of freedom and can or must learn certain inductive biases
from the data (assuming that these biases are conducive to optimizing the
training objective). However, everything that needs to be learned requires more

training examples.

The following sections explain the main inductive biases encountered in CNNs

and how ViTs work well without them.

Inductive Biases in CNNs

The following are the primary inductive biases that largely define how CNNs

function:

Local connectivity In CNNs, each unit in a hidden layer is connected to only a
subset of neurons in the previous layer. We can justify this restriction by assuming

that neighboring pixels are more relevant to each other than pixels that are
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farther apart. As an intuitive example, consider how this assumption applies to

the context of recognizing edges or contours in an image.

Weight sharing Via the convolutional layers, we use the same small set of weights
(the kernels or filters) throughout the whole image. This reflects the assumption
that the same filters are useful for detecting the same patterns in different parts of

the image.

Hierarchical processing CNNs consist of multiple convolutional layers to extract
features from the input image. As the network progresses from the input to the
output layers, low-level features are successively combined to form increasingly
complex features, ultimately leading to the recognition of more complex objects
and shapes. Furthermore, the convolutional filters in these layers learn to detect

specific patterns and features at different levels of abstraction.

Spatial invariance CNNs exhibit the mathematical property of spatial invariance,
meaning the output of a model remains consistent even if the input signal is
shifted to a different location within the spatial domain. This characteristic arises
from the combination of local connectivity, weight sharing, and the hierarchical

architecture mentioned earlier.

The combination of local connectivity, weight sharing, and hierarchical processing
in a CNN leads to spatial invariance, allowing the model to recognize the same

pattern or feature regardless of its location in the input image.

Translation invariance is a specific case of spatial invariance in which the output
remains the same after a shift or translation of the input signal in the spatial
domain. In this context, the emphasis is solely on moving an object to a different
location within an image without any rotations or alterations of its other

attributes.

In reality, convolutional layers and networks are not truly translation-invariant;
rather, they achieve a certain level of translation equivariance. What is the
difference between translation invariance and equivariance? Translation
invariance means that the output does not change with an input shift, while
translation equivariance implies that the output shifts with the inputin a
corresponding manner. In other words, if we shift the input object to the right, the

results will correspondingly shift to the right, as illustrated in Figure 13.1.
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Figure 13.1

As Figure 13.1 shows, under translation invariance, we get the same output
pattern regardless of the order in which we apply the operations: transformation

followed by translation or translation followed by transformation.

As mentioned earlier, CNNs achieve translation equivariance through a
combination of their local connectivity, weight sharing, and hierarchical
processing properties. Figure 13.2 depicts a convolutional operation to illustrate
the local connectivity and weight-sharing priors. This figure demonstrates the
concept of translation equivariance in CNNs, in which a convolutional filter

captures the input signal (the two dark blocks) irrespective of where it is located

in the input.
EPAEN ]
0|0
0|00
3x3 input Output o
image feature map
111) Convolutional
" filter
N
Figure 13.2
5101 57, 35239 50


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEEFFAR30YE (JHERR& R CHEE) | https:/ningg top/Machine-Learning-Q-and-Al/

Figure 13.2 shows a 3 X 3 input image that consists of two nonzero pixel values
in the upper-left corner (top portion of the figure) or upper-right corner (bottom
portion of the figure). If we apply a 2 X 2 convolutional filter to these two input
image scenarios, we can see that the output feature maps contain the same
extracted pattern, which is on either the left (top of the figure) or the right
(bottom of the figure), demonstrating the translation equivariance of the

convolutional operation.

For comparison, a fully connected network such as a multilayer perceptron lacks
this spatial invariance or equivariance. To illustrate this point, picture a multilayer
perceptron with one hidden layer. Each pixel in the input image is connected with
each value in the resulting output. If we shift the input by one or more pixels, a

different set of weights will be activated, as illustrated in Figure 13.3.

Reshape

mimininy ¥
Saty

Input
image

Figure 13.3

Like fully connected networks, ViT architecture (and transformer architecture in
general) lacks the inductive bias for spatial invariance or equi- variance. For
instance, the model produces different outputs if we place the same object in two
different spatial locations within an image. This is not ideal, as the semantic
meaning of an object (the concept that an object represents or conveys) remains

the same based on its location. Consequently, it must learn these invariances
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directly from the data. To facilitate learning useful patterns present in CNNs

requires pretraining over a larger dataset.

A common workaround for adding positional information in ViTs is to use relative
positional embeddings (also known as relative positional encodings) that consider
the relative distance between two tokens in the input sequence. However, while
relative embeddings encode information that helps transformers keep track of the
relative location of tokens, the transformer still needs to learn from the data

whether and how far spatial information is relevant for the task at hand.

ViTs Can Outperform CNNs

The hardcoded assumptions via the inductive biases discussed in previous
sections reduce the number of parameters in CNNs substantially compared to fully
connected layers. On the other hand, ViTs tend to have larger numbers of
parameters than CNNs, which require more training data. (Refer to Chapter [ch11]
for a refresher on how to precisely calculate the number of parameters in fully

connected and convolutional layers.)

ViTs may underperform compared to popular CNN architectures without
extensivep retraining, but they can perform very well with a sufficiently large
pretraining dataset. In contrast to language transformers, where unsupervised
pretraining (such as self-supervisedlearning, disussed in Chapter [ch02] ) is a
preferred choice, vision transformers are often pretrained using large, labeled
datasets like ImageNet, which provides millions of labeled images for training,

and regular supervised learning.

An example of ViTs surpassing the predictive performance of CNNs, given enough
data, can be observed from initial research on the ViT architecture, as shown in
the paper "An Image Is Worth 16x16 Words: Transformers for Image Recognition at
Scale."? This study compared ResNet, a type of convolutional network, with the
original ViT design using different dataset sizes for pretraining. The findings also
showed that the ViT model excelled over the convolutional approach only after

being pretrained on a minimum of 100 million images.

Inductive Biases in ViTs
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ViTs also possess some inductive biases. For example, vision transformers patchify
the input image to process each input patch individually. Here, each patch can
attend to all other patches so that the model learns relationships between far-

apart patches in the input image, as illustrated in Figure 13.4.

Classification
head

Transformer encoder

[

Positional embedding

tot
Linear projection

ot fot r 1t

T -
— A u’g%ﬁ

Figure 13.4

The patchify inductive bias allows ViTs to scale to larger image sizes without
increasing the number of parameters in the model, which can be computationally
expensive. By processing smaller patches individually, ViTs can efficiently capture
spatial relationships between image regions while benefiting from the global

context captured by the self-attention mechanism.

This raises another question: how and what do ViTs learn from the training data?
ViTs learn more uniform feature representations across all layers, with self-
attention mechanisms enabling early aggregation of global information. In
addition, the residual connections in ViTs strongly propagate features from lower

to higher layers, in contrast to the more hierarchical structure of CNNs.

ViTs tend to focus more on global than local relationships because their self-
attention mechanism allows the model to consider long-range dependencies
between different parts of the input image. Consequently, the self-attention layers
in ViTs are often considered low-pass filters that focus more on shapes and

curvature.

In contrast, the convolutional layers in CNNs are often considered high-pass filters
that focus more on texture. However, keep in mind that convolutional layers can
act as both high-pass and low-pass filters, depending on the learned filters at
each layer. High-pass filters detect an image's edges, fine details, and texture,

while low-pass filters capture more global, smooth features and shapes. CNNs
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achieve this by applying convolutional kernels of varying sizes and learning

different filters at each layer.

Recommendations

ViTs have recently begun outperforming CNNs if enough data is available for
pretraining. However, this doesn't make CNNs obsolete, as methods such as the

popular EfficientNetV2 CNN architecture are less memory and data hungry.

Moreover, recent ViT architectures don't rely solely on large datasets, parameter
numbers, and self-attention. Instead, they have taken inspiration from CNNs and
added soft convolutional inductive biases or even complete convolutional layers

to get the best of both worlds.

In short, vision transformer architectures without convolutional layers generally
have fewer spatial and locality inductive biases than convolutional
neuralnetworks. Consequently, vision transformers need to learn data-related
concepts such as local relationships among pixels. Thus, vision transformers
require more training data to achieve good predictive performance and produce

acceptable visual representations in generative modeling contexts.

Exercises

13-1. Consider the patchification of the input images shown in Figure 13.4. The

size of the resulting patches controls a computational and predictive performance
trade-off. The optimal patch size depends on the application and desired trade-off
between computational cost and model performance. Do smaller patches typically

result in higher or lower computational costs?

13-2. Following up on the previous question, do smaller patches typically lead to a

higher or lower prediction accuracy?
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(2021), https://arxiv.org/abs/2108.08810.

¢ AdetailedresearcharticlecoveringtheEfficientNetV2CNNarchitecture:MingxingTanandQuocV.Le

SmallerMo- delsandFasterTraining"?(2021),https://arxiv.org/abs/2104.00298.

* AViT architecture that also incorporates convolutional layers: StA©phane
d'Ascoli et al., "ConViT: Improving Vision Transform- ers with Soft

Convolutional Inductive Biases"? (2021), https://arxiv.org/abs/2103.10697.

* Another example of a ViT using convolutional layers: Haiping Wu et al., "CvT:
Introducing Convolutions to Vision Transformers"? (2021),

https://arxiv.org/abs/2103.15808.
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Chapter 14: The Distributional
Hypothesis

What is the distributional hypothesis in natural language processing

(NLP)? Where is it used, and how far does it hold true?

The distributional hypothesis is a linguistic theory suggesting that words
occurring in the same contexts tend to have similar meanings, according to the
original source, "Distributional Structure"? by Zellig S. Harris. Succinctly, the more
similar the meanings of two words are, the more often they appear in similar

contexts.

Tips: 9 f{Ri& (distributional hypothesis), IR DHIEX
(distributional semantics), FIFRRIFE L TXPHNSHER. EIA
B, £ BOMLETx PHIMN 25 FEEE BUNEX .

Consider the sentence in Figure 14.1, for example. The words cats and dogs often
occur in similar contexts, and we could replace cats with dogs without making the
sentence sound awkward. We could also replace cats with hamsters, since both
are mammals and pets, and the sentence would still sound plausible. However,
replacing cats with an unrelated word such as sandwiches would render the
sentence clearly wrong, and replacing cats with the unrelated word driving would

also make the sentence grammatically incorrect.

Tips: Bl1.1PEGF, catsflldogsiZ & KRB ETXXH, FATIAE
cats&# R dogs, MAEILAIFIFERFFIR.

o FATBRIDANG catsB 4R hamsters, HAENE B NDAEY, QF

rEesRiBRaE,
e BE, MRB catsBMRANTEXIIETsandwiches, G FRERFBEH
-\L%,

o WMFRIF cats BN EXRIIBE driving, B FHETRFIEEHEIR.

Driving

Hamsters Sandwiches
Cats c:re among the most popular household pets.
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Figure 14.1

It is easy to construct counterexamples using polysemous words, that is, words
that have multiple meanings that are related but not identical. For example,
consider the word bank. As a noun, it can refer to a financial institution, the
"rising ground bordering a river,"? the "steep incline of a hill,"? or a "protective
cushioning rim"? (according to the Merriam-Webster dictionary). It can even be a
verb: to bank on something means to rely or depend on it. These different
meanings have different distributional properties and may not always occur in

similar contexts.

Nonetheless, the distributional hypothesis is quite useful. Word embeddings
(introduced in Chapter [ch01]) such as Word2vec, as well as many large language
transformer models, rely on this idea. This includes the masked language model

in BERT and the next-word pretraining task used in GPT.

Tips: REFERSI, SHRIRESMNATIFERRA.

e Word2vec ZiF#R A (word embeddings) WRELUNRIFZ ABLEZEHR
(large language models) #PEFXMEZ,
XEE BERT FIHY #13 1BES&REL, M 6PT MY T—Ma MillEES.

Word2vec, BERT, and GPT

The Word2vec approach uses a simple, two-layer neuralnetwork to encode
words into embedding vectors such that the embedding vectors of similar words
are both semantically and syntactically close. There are two ways to train a
Word2vec model: the continuous bag-of-words (CBOW) approach and the
skip-gram approach. When using CBOW, the Word2vec model learns to predict
the current words by using the surrounding context words. Conversely, in the
skip-gram model, Word2vec predicts the context words from a selected word.
While skip-gram is more effective for infrequent words, CBOW is usually faster to

train.

Tips: FIXME BEFARE (R IBfE? 2 2

e Word2vec BR—M{EMBRMBHZNEIFRITRIZNIRARENT
7
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.« REWFEENFIE

RAETIFARI0PE (B &H SCHETE) |

o BFF)IIZWord2vecEREIFY 53

o L{FFHCBOWHY, Word2vectRELIZ ]

https://ningg.top/Machine-Learning-Q-and-Al/

EEER (CBOW) A3EF Bk

W E R B E £ X REs I =

o Bk, EHFEEF, Wordvec MIETE R BIFFUN_ET3C81T,

RHRFEFY, BECBOWEREIFEEEIR,

After training, word embeddings are placed within the vector space so that words

with common contexts in the corpus--that is, words with semantic and syntactic

similarities--are positioned close to each other, as illustrated in Figure 14.2.

Conversely, dissimilar words are located farther apart in the embedding space.

A
France
cat Y Paris Germany
cats Berlin Spain
dog Madrid
szt Semantic relationship
Syntactic relationship

>

Figure 14.2

BERT is an LLM based on the transformer architecture (see Chapter [ch08]) that

uses a masked language modeling approach that involves masking (hiding) some

of the words in a sentence. Its task is to predict these masked words based on the

other words in the sequence, as illustrated in Figure 14.3. This is a form of the

self-supervised learning used to pretrain LLMs (see Chapter [ch02] for more on

self-supervised learning). The pretrained model produces embeddings in which

similar words (or tokens) are close in the embedding space.
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nice, bad, beautiful . . .

I I A

BERT model

[
It is aday

Figure 14.3

GPT, which like BERT is also an LLM based on the transformer architecture,
functions as a decoder. Decoder-style models like GPT learn to predict subsequent
words in a sequence based on the preceding ones, as illustrated in Figure 14.4.
GPT contrasts with BERT, an encoder model, as it emphasizes predicting what

follows rather than encoding the entire sequence simultaneously.

nice, bad, beautiful . . .

1]

=1

It is a

Figure 14.4

Where BERT is a bidirectional language model that considers the whole input

sequence, GPT only strictly parses previous sequence elements. This means BERT
is usually better suited for classification tasks, whereas GPT is more suited for text
generation tasks. Similar to BERT, GPT produces high-quality contextualized word

embeddings that capture semantic similarity.

Tips:

* BERT 22— WE ESEE, ZE BTMRARY .
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o GPT H=IEMENT BI—TFITE .

* XEIKE BERT BEEEE D RIS, M GPT BEEEXAERMIES.,
5 BERT 2, 6PT FESFE=M E TR , HIEIE B
.

Does the Hypothesis Hold?

For large datasets, the distributional hypothesis more or less holds true, making it
quite useful for understanding and modeling language patterns, word
relationships, and semantic meanings. For example, this concept enables
techniques like word embedding and semantic analysis, which, in turn, facilitate
natural language processing tasks such as text classification, sentiment analysis,

and machine translation.

Tips:

o XMTAREHESER, SHMRIZUOZERR, MTEFESHEN, 8
ﬁ%%ﬂ%%aX#%ﬁﬁo

o B, XMEZBRTH BEA M BEXHT ZFNRA, XERKR
WX (T BRESLIBES, W sthpz | BRI M 8

#

In conclusion, while there are counterexamples in which the distributional
hypothesis does not hold, it is a very useful concept that forms the cornerstone of

modern language transformer models.

Exercises

14-1. Does the distributional hypothesis hold true in the case of homophones, or

words that sound the same but have different meanings, such as there and their?

14-2. Can you think of another domain where a concept similar to the
distributional hypothesis applies? (Hint: think of other input modalities for neural

networks.)
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Chapter 15: Data Augmentation for
Text

How is data augmentation useful, and what are the most common

augmentation techniques for text data?

Data augmentation is useful for artificially increasing dataset sizes to improve
model performance, such as by reducing the degree of overfitting, as discussed in
Chapter [ch05]. This includes techniques often used in computer vision models,

like rotation, scaling, and flipping.

Tips: #{#E1832 ( Data Augmentation ) R—FMEIIEMNIIGEIIEE, kiZ
EIRELZLRERIRR,

FUEIERAT A AR

L ETHMEELE: BTN ERFREIE, WEXEER. R
PR, BIEUERHR. QFITEL. REEAS.
2. BT RBIR ARG R W B RGRAVEE, W0 6AN . VAE F,

HURIGREE SHEU T /LM

1. EXigE# ( Synonym Replacement ): {X#i[E)Nia8k, FHR[EX1d;
s BB HRNENBUERE.

2. 21EMIBR ( Word Deletion ): BENLMIERE)FHRAFELRIE; BiINiE
MIFRER,

3. RAfU BRI ( Word Position Swapping )1 BENLR 0] FHhE L
WHMIE; BIRBERME,

4. @F3TEL ( Sentence Shuffling ): FEHITELEFAHRELE FHIIT
F; BIGREITELE,

5. IRFEN ( Noise Injection ): FEGIFHIRI—LERENLIRA; EIUR
BIRER,

6. [@1% ( Back Translation ): A FENIFM A —IES, BEHZE
¥ B EEIFERE,

7. BREWE ( Synthetic Data ): {ERLLMARFRAIENE: EIORELEN

REL,
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Similarly, there are several techniques for augmenting text data. The most
common include synonym replacement, word deletion, word position swapping,
sentence shuffling, noise injection, back translation, and text generated by LLMs.
This chapter discusses each of these, with optional code examples in the
supplementary/q15-text-augment subfolder at
https://github.com/rasbt/MachineLearning-QandAl-book.

Synonym Replacement

In synonym replacement, we randomly choose words in a sentence -- often nouns,
verbs, adjectives, and adverbs -- and replace them with synonyms. For example,
we might begin with the sentence "The cat quickly jumped over the lazy dog,"?
and then augment the sentence as follows: "The cat rapidly jumped over the idle

dog."?

Synonym replacement can help the model learn that different words can have
similar meanings, thereby improving its ability to understand and generate text. In
practice, synonym replacement often relies on a thesaurus such as WordNet.
However, using this technique requires care, as not all synonyms are
interchangeable in all contexts. Most automatic text replacement tools have
settings for adjusting replacement frequency and similarity thresholds. However,
automatic synonym replacement is not perfect, and you might want to apply post-

processing checks to filter out replacements that might not make sense.

| Tips: B5) FXia%i MERHTER, BiNFRTIAENEHRER,

Word Deletion

Word deletion is another data augmentation technique to help models learn.
Unlike synonym replacement, which alters the text by substituting words with
their synonyms, word deletion involves removing certain words from the text to
create new variants while trying to maintain the overall meaning of the sentence.
For example, we might begin with the sentence "The cat quickly jumped over the
lazy dog"? and then remove the word quickly: "The cat jumped over the lazy

dog."?
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By randomly deleting words in the training data, we teach the model to make
accurate predictions even when some information is missing. This can make the
model more robust when encountering incomplete or noisy data in real-world
scenarios. Also, by deleting nonessential words, we may teach the model to focus

on key aspects of the text that are most relevant to the task at hand.

However, we must be careful not to remove critical words that may significantly
alter a sentence's meaning. For example, it would be suboptimal to remove the
word cat in the previous sentence: "The quickly jumped over the lazy dog."? We
must also choose the deletion rate carefully to ensure that the text still makes
sense after words have been removed. Typical deletion rates might range from 10
percent to 20 percent, but this is a general guideline and could vary significantly

based on the specific use case.

Tips: SR, BIMRSHFE—LEZMNETE, SHUFTEIR, BiX
IREMBRE., —AMERERTE 10% 3 20% 2|8, ERAFRFEREAMESE

304
iEo

Word Position Swapping

In word position swapping, also known as word shuffling or permutation, the
positions of words in a sentence are swapped or rearranged to create new
versions of the sentence. If we begin with "The cat quickly jumped over the lazy
dog,"? we might swap the positions of some words to get the following: "Quickly

the cat jumped the over lazy dog."?

While these sentences may sound grammatically incorrect or strange in English,
they provide valuable training information for data augmentation because the
model can still recognize the important words and their associations with each
other. However, this method has its limitations. For example, shuffling words too
much or in certain ways can drastically change the meaning of a sentence or
make it completely nonsensical. Moreover, word shuffling may interfere with the
model's learning process, as the positional relationships between certain words

can be vital in these contexts.

Tips: EF$TEL, ABMTREXTAESTFREXR, MIEEEER. B
EITELATRESHIEX ERBTIFLEX . REESH, @ENIRFREE,
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| mEmiapmEREINR,

Sentence Shuffling

In sentence shuffling, entire sentences within a paragraph or a document are
rearranged to create new versions of the input text. By shuffling sentences within
a document, we expose the model to different arrangements of the same content,
helping it learn to recognize thematic elements and key concepts rather than
relying on specific sentence order. This promotes a more robust understanding of
the document's overall topic or category. Consequently, this technique is
particularly useful for tasks that deal with document-level analysis or paragraph-
level understanding, such as document classification, topic modeling, or text

summarization.

In contrast to the aforementioned word-based methods (word position swapping,
word deletion, and synonym replacement), sentence shuffling maintains the
internal structure of individual sentences. This avoids the problem of altering
word choice or order such that sentences become grammatically incorrect or

change meaning entirely.

Sentence shuffling is useful when the order of sentences is not crucial to the
overall meaning of the text. Still, it may not work well if the sentences are logically
or chronologically connected. For example, consider the following paragraph: "I
went to the supermarket. Then | bought ingredients to make pizza. Afterward, |
made some delicious pizza."? Reshuffling these sentences as follows disrupts the
logical and temporal progression of the narrative: "Afterward, | made some
delicious pizza. Then I bought ingredients to make pizza. | went to the

supermarket."?

Noise Injection

Noise injection is an umbrella term for techniques used to alter text in various
ways and create variation in the texts. It may refer either to the methods
described in the previous sections or to character-level techniques such as

inserting random letters, characters, or typos, as shown in the following examples:
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Random character insertion "The cat qzuickly jumped over the lazy dog."?

(Inserted a zin the word quickly.)

Random character deletion "The cat quickl jumped over the lazy dog."? (Deleted y

from the word quickly.)

Typo introduction "The cat gickuly jumped over the lazy dog."? (Introduced a typo
in quickly, changing it to gickuly.)

These modifications are beneficial for tasks that involve spell-checking and text
correction, but they can also help make the model more robust to imperfect

inputs.

Tips: BEHLFRFAA . BIER. |37, BETREZFIHEINELRER, B
SEERATRESBIREINS.

Back Translation

Back translation is one of the most widely used techniques to create variation in
texts. Here, a sentence is first translated from the original language into one or
more different languages, and then it is translated back into the original language.
Translating back and forth often results in sentences that are semantically similar
to the original sentence but have slight variations in structure, vocabulary, or
grammar. This generates additional, diverse examples for training without altering

the overall meaning.

For example, say we translate "The cat quickly jumped over the lazy dog"? into
German. We might get "Die Katze sprang schnell Avsber den faulen Hund."? We
could then translate this German sentence back into English to get "The cat

jumped quickly over the lazy dog."?

The degree to which a sentence changes through backtranslation depends on the
languages used and the specifics of the machine translation model. In this
example, the sentence remains verys imilar. However, in other cases or with other
languages, you might see more significant changes in wording or sentence

structure while maintaining the same overall meaning.
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This method requires access to reliable machine translation models or services,
and care must be taken to ensure that the back-translated sentences retain the

essential meaning of the original sentences.

Tips: EIiF, EIHAFEIFRS—MES, BEIFOR, TIAEMRFRIER
&, BEFNERBNHTER, FERRTSENEIFS

Synthetic Data

Synthetic data generation is an umbrella term that describes methods and
techniques used to create artificial data that mimics or replicates the structure of
real-world data. All methods discussed in this chapter can be considered synthetic
data generation techniques since they generate new data by making small
changes to existing data, thus maintaining the overall meaning while creating

something new.

Modern techniques to generate synthetic data now also include using decoder-
style LLMs such as GPT (decoder-style LLMs are discussed in more detail in
Chapter [ch17]). We can use these models to generate new data from scratch by
using "complete the sentence"? or "generate example sentences"? prompts,
among others. We can also use LLMs as alternatives to back translation,

prompting them to rewrite sentences as shown in Figure 1.1.

@ chat.openai.com

+! Model: G
+ Newchat + Model: GPT-4

m rewrite the following sentence: "The cat quickly jumped over the lazy dog."

[3 Rewriting Sentence:Ca Z W

The agile cat promptly leaped over the idle dog.
‘G Regenerate response N

Send a message

#M Sebastian Raschka ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT May 12 Version

Note that an LLM, as shown in Figure 1.1, runs in a nondeterministic mode by
default, which means we can prompt it multiple times to obtain a variety of

rewritten sentences.
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Recommendations

The data augmentation techniques discussed in this chapter are commonly used
in text classification, sentiment analysis, and other NLP tasks where the amount

of available labeled data might be limited.

LLMs are usually pretrained on such a vast and diverse dataset that they may not
rely on these augmentation techniques as extensively as in other, more specific
NLP tasks. This is because LLMs aim to capture the statistical properties of the
language, and the vast amount of data on which they are trained often provides a
sufficient variety of contexts and expressions. However, in the fine-tuning stages of
LLMs, where a pretrained model is adapted to a specific task with a smaller, task-
specific dataset, data augmentation techniques might become more relevant

again, mainly if the task-specific labeled dataset size is limited.

Tips: B3R 7ELLMEY il MERFIEE FAXER , EALLMEREARTIE
BB LTINS T . (BTE suEmer , FUEIEETIEE 56/ , 15— EES
FERNREEUEE BT,

Exercises

15-1. Can the use of text data augmentation help with privacy concerns?

15-2. What are some instances where data augmentation may not be beneficial for

a specific task?

References

* The WordNet thesaurus: George A. Miller, "WordNet: A Lexical Database for
English"? (1995), https://dl.acm.org/d0i/10.1145/219717.219748.
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Chapter 16: Self-Attention

Where does self-attention getits name, and how is it different from

previously developed attention mechanisms?

Self-attention enables a neural network to refer to other portions of the input
while focusing on a particular segment, essentially allowing each part the ability
to "attend"? to the whole input. The original attention mechanism developed for
recurrent neural networks (RNNSs) is applied between two different
sequences: the encoder and the decoder embeddings. Since the attention
mechanisms used in transformer-based large language models is designed to

work on all elements of the same set, it is known as self-attention.

Tips: self-attention RIFHMEMBEXRTIFEIRS N, FIRSSEEHMER
7. BTERS#EERIE BB,

This chapter first discusses an earlier attention mechanism developed for RNNs,
the Bahdanau mechanism, in order to illustrate the motivation behind
developing attention mechanism. We then compare the Bahdanau mechanism to

the self-attention mechanism prevalent in transformer architectures today.

Attention in RNNs

One example of an attention mechanism used in RNNs to handle long sequences
is Bahdanau attention. Bahdanau attention was developed to make machine
learning models, particularly those used in translating languages, better at
understanding long sentences. Before this type of attention, the whole input (such
as a sentence in English) was squashed into a single chunk of information, and

important details could get lost, especially if the sentence was long.

To understand the difference between regular attention and self- attention, let's

begin with the illustration of the Bahdanau attention mechanism in Figure 16.1.
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Figure 16.1

In Figure 16.1, the ¢ values represent the attention weights for the second
sequence element and each other element in the sequence from 1 to 7.

Furthermore, this original attention mechanism involves two RNNs .

* The RNN at the bottom, computing the attention weights, represents the
encoder,

* while the RNN at the top, producing the output sequence, is a decoder.

Tips:

s RIBEENNFZNATRIAEREINN: HEs M EEeE kA

o WFEMERNBEFITER, ®BRRN ETRENASHMRIBERERK
) ETXEE .

o rTxaE BRIMARINMETR, BFFEMATTRMNAM, H
B, EENDE (o) RENERK.

o XAV iR OMARINAETR (ETX).
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In short, the original attention mechanism developed for RNNs is applied between
two different sequences: the encoder and decoder embeddings. For each
generated output sequence element, the decoder RNN at the top is based on a
hidden state plus a context vector generated by the encoder. This context vector
involves all elements of the input sequence and is a weighted sum of all input
elements where the attention scores (a's) represent the weighting coefficients.
This allows the decoder to access all input sequence elements (the context) at
each step. The key idea is that the attention weights (and context) may differ and

change dynamically at each step.

The motivation behind this complicated encoder-decoder design is that we cannot
translate sentences word by word. This would result in grammatically incorrect

outputs, as illustrated by the RNN architecture (a) in Figure 16.2.

(a) Output sequence [ ] ® 0 Incorrect translation

i i i Can you me help this sentence to translate
Hidden states @ — @ - @ T T W T I T T T
Input sequence () () - O Kannst du mir helfen diesen Satz ~ zu uebersetzen
Decoder
o-0.0
4 i i Can you help me  to translate this sentence
L R R
! f ! “Memorize” Kannst du mir helfen diesen Satz  zu uebersetzen
@] @ - 0O input sequence
Encoder via hidden state
Figure 16.2

Figure 16.2 shows two different sequence-to-sequence RNN designs for sentence

translation.

Figure 16.2(a) represents a regular sequence-to-sequence RNN that may be used

to translate a sentence from German to English word by word.

Figure 16.2(b) depicts an encoder-decoder RNN that first reads the whole

sentence before translating it.

RNN architecture (a) is best suited for time series tasks in which we want to
make one prediction at a time, such as predicting a given stock price day by day.
For tasks like language translation, we typically opt for an encoder-decoder RNN,
asin architecture (b) inFigure 16.2. Here, the RNN encodes the input
sentence, stores it in an intermediate hidden representation, and generates the

output sentence. However, this creates a bottleneck where the RNN has to
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memorize the whole input sentence via a single hidden state, which does not

work well for longer sequences.

The bottleneck depicted in architecture (b) prompted the Bahdanau
attention mechanism's original design, allowing the decoder to access all
elements in the input sentence at each time step. The attention scores also give
different weights to the different input elements depending on the current word
that the decoder generates. For example, when generating the word help in the
output sequence, the word helfen in the German input sentence may get a large

attention weight, as it's highly relevant in this context.

The Self-Attention Mechanism

The Bahdanau attention mechanism relies on a somewhat complicated encoder-
decoder design to model long-term dependencies in sequence- to-sequence
language modeling tasks. Approximately three years after the Bahdanau
mechanism, researchers worked on simplifying sequence-to- sequence modeling
architectures by asking whether the RNN backbone was even needed to achieve
good language translation performance. This led to the design of the original

transformer architecture and self-attention mechanism.

Tips: transformer 2244, 7£ 2017 g, ATRERFEIIZEIFS (sequence-
to-sequence) IEE EBIRESPIIKZMRIIQE,

£ transformer Z2t9h, SFEANBIHEMATFRE—FFIHRMFRBTE, A
=1% Bahdanau ¥ E NN FIAREE RN A RIFS,

5 RNN FESEENHFIERM, ETFTXEAERBAFIUTREAIINRA, Hf
ABNDE (o) RENERH,

XATFEERBARMAFRIINMAETRE (ETX).

In self-attention, the attention mechanism is applied between all elements in the
same sequence (as opposed to involving two sequences), as depicted in the
simplified attention mechanism in Figure 16.3. Similar to the attention
mechanism for RNNs, the context vector is an attention-weighted sum over the

input sequence elements.
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Input token i

NN

All tokens in input sequence:

Token 1 [[ ][ ] [ e, Context vector i
TokenQDDD [ e, —’...

= Token 1 x a,
Token T D L] [ e,

Token 2 x a,

Dot products between 4+ Token Tx a ,

input tokens i and other '
input tokens

Figure 16.3

+

2

+

While Figure 16.3 doesn't include weight matrices, the self-attention mechanism
used in transformers typically involves multiple weight matrices to compute the

attention weights.

This chapter laid the groundwork for understanding the inner workings of
transformer models and the attention mechanism. The next chapter covers the

different types of transformer architectures in more detail.

Exercises

16-1. Considering that self-attention compares each sequence element with itself,

what is the time and memory complexity of self-attention?

16-2. We discussed self-attention in the context of natural language processing.

Could this mechanism be useful for computer vision applications as well?

References

* The paper introducing the original self-attention mechanism, also known as
scaled dot-product attention: Ashish Vaswani et al., "Attention Is All You
Need"? (2017), https://arxiv.org/abs/1706.03762.

* The Bahdanau attention mechanism for RNNs: Dzmitry Bahdanau, Kyunghyun
Cho, and Yoshua Bengio, "Neural Machine Translation by Jointly Learning to

Align and Translate"? (2014), https://arxiv.org/abs/1409.0473.
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* For more about the parameterized self-attention mechanism, check out my
blog post: "Understanding and Coding the Self-Attention Mechanism of Large
Language Models from Scratch"? at

https://sebastianraschka.com/blog/2023/self-attention-from-scratch.html.
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Chapter 17: Encoder- and Decoder-
Style Transformers

What are the differences between encoder- and decoder-based language

transformers?

Both encoder- and decoder-style architectures use the same self-attention layers
to encode word tokens. The main difference is that encoders are designed to learn
embeddings that can be used for various predictive modeling tasks such as
classification. In contrast, decoders are designed to generate new texts, for

example, to answer user queries.

Tips: #8283 (encoder) FfEHE2F (decoder) ZEMIERABEEEN (self-
attention) BRINEATHITR,

FEXAET:

o ‘midds, METREINXABNLETXRT (embedding), UERTHEF

EMFUNESS ;
o MiEMEEE, WETTERTNXAAET, LB TEZERFEEEFEM
ES,

This chapter starts by describing the original transformer architecture consisting
of an encoder that processes input text and a decoder that produces translations.
The subsequent sections then describe how models like BERT and RoBERTa utilize
only the encoder to understand context and how the GPT architectures emphasize

decoder-only mechanisms for text generation.

The Original Transformer

The original transformer architecture introduced in Chapter [ch16] was developed
for English-to-French and English-to-German language translation. It utilized both

an encoder and a decoder, as illustrated in Figure 17.1.
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Figure 17.1

In Figure 17.1, the input text (that is, the sentences of the text to betranslated) is

first tokenized into individual word tokens, which are then encoded via an
embedding layer before they enter the encoder part (see Chapter [ch01] for
more on embeddings). After a positional encoding vector isadded to each
embedded word,the embeddings go through a multi-head self-attention
layer . This layer is followed by an addition step ,indicated by a plus sign (+)
in Figure 17.1, which performs a layer normalization and adds the original
embeddings viaa skip connection , also known as a residual or shortcut
connection. Following this is a LayerNormblock, short for layernormalization,
which normalizes the activations of the previous layer to improve the stability of
the neural network’s training. The addition of the original embeddings and the

layer normalization steps are often summarized as the Add & Normstep .

Finally, after entering the fully connected network --asmall, multilayer
perceptron consisting of two fully connected layers with a nonlinear activation
function in between -- the outputs are again added and normalized before they

are passed toa multi-head self-attention layer of the decoder.

b=
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Tips:

e tokenized : NFNAHFHALERIFHIET (token),

* embedding layer : YiETHEIRNMERT.

* positional encoding vector : J5EAcHIMIEEERINEIDERT
H,

* nmulti-head self-attention layer : Xi@AiHTEFENITE.

* addition step : WRIEMEBRTHEIEENITELEREM, HIRRA
REER | MERER | REERE .

e layer normalization : X8 TERIFEHITIA—H, NIRSHEW

BRRRE .

* Add & Normstep ' RFIGMEXRTMEEENITELSRBM, FHHT
J3—1t.

e fully connected network : —\HZERHZE, ESMITEEE

BAH—MEE M RUEREL

The decoder in Figure 17.1 has a similar overall structure to the encoder. The key
difference is that the inputs and outputs are different: the encoder receives the

input text to be translated, while the decoder generates the translated text.

Encoders

The encoder part in the original transformer, as illustrated in Figure 17.1, is
responsible for understanding and extracting the relevant information from the
input text. It then outputs a continuous representation (embedding) of the input
text, which is passed to the decoder. Finally, the decoder generates the translated
text (target language) based on the continuous representation received from the

encoder.

Over the years, various encoder-only architectures have been developed based
on the encoder module of the original transformer model outlined earlier. One
notable example is BERT , which stands for Bidirectional Encoder

Representations from Transformers.

As noted in Chapter [ch14], BERT is an encoder-only architecture based on the
transformer's encoder module. The BERT model is pretrained on a large text

corpus using masked language modeling and next-sentence prediction tasks.
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Figure 17.2 illustrates the masked language modeling pretraining objective used

in BERT-style transformers.
I Tips: BERT EETHEEESEENINNT—aESS fllZaEE,

Input sentence: The curious kitten deftly climbed the bookshelf

!

(1) Pick 15 percent of the words randomly

N

The curious kitten deftly climbed the bookshelf

/

(2) ® 80 percent of the time, replace with [MASK] token
® 10 percent of the time, replace with random token (for example, ate)
® 10 percent of the time, keep unchanged

Modified sentence: The curious kitten deftly [MASK] the bookshelf

Figure 17.2

As Figure 17.2 demonstrates, the main idea behind masked language modeling is
to mask (or replace) random word tokens in the input sequence and then train the

model to predict the original masked tokens based on the surrounding context.

In addition to the masked language modeling pretraining task illustrated in
Figure 17.2, the next-sentence prediction task asks the model to predict whether
the original document's sentence order of two randomly shuffled sentences is
correct. For example, say that two sentences, in random order, are separated by
the [SEP] token (SEPis short for separate). The brackets are a part of the token's
notation and are used to make it clear that this is a special token as opposed to a
regular word in the text. BERT-style transformers also use a [CLS] token. The [CLS]
token serves as a placeholder token for the model, prompting the model to return

a True or False label indicating whether the sentences are in the correct order:

e "[CLS] Toast is a simple yet delicious food. [SEP] It's often served with butter,

jam, or honey."?

e "[CLS] It's often served with butter, jam, or honey. [SEP] Toast is a simple yet

delicious food."?

The masked language and next-sentence pretraining objectives allow BERT to
learn rich contextual representations of the input texts, which can then be fine-

tuned for various downstream tasks like sentiment analysis, question answering,
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and named entity recognition. It's worth noting that this pretraining is a form of
self-supervised learning (see Chapter [ch02] for more details on this type of

learning).

Tips: [HIS—RIVE, SMWINGLXE—HEEESR (self-supervised

learning)

RoBERTa , which stands for Robustly Optimized BERT Approach, is an improved
version of BERT. It maintains the same overall architecture as BERT but employs
several training and optimization improvements, such as larger batch sizes, more
training data, and eliminating the next-sentence prediction task. These changes
have resulted in RoBERTa achieving better performance on various natural

language understanding tasks than BERT.

Decoders

Coming back to the original transformer architecture outlined in Figure 17.1, the
multi-head self-attention mechanism in the decoder is similar to the one in the
encoder, but it is masked to prevent the model from attending to future positions,
ensuring that the predictions for position / can depend only on the known outputs
at positions less than /. As illustrated in Figure 17.3, the decoder generates the

output word by word.

Tips: #1923 0, N7 Bk RE kg HER, ST &8 &
H,
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This masking (shown explicitly in Figure 17.3, although it occurs internally in the
decoder's multi-head self-attention mechanism) is essential to maintaining the
transformer model's autoregressive property during training and inference. This
autoregressive property ensures that the model generates output tokens one at a
time and uses previously generated tokens as context for generating the next

word token.

Tips: f#I3230, AT Rix KE a3 e, 1T BB L4,

B[EY3 (Autoregressive) : FEAMIVESH, EESRIEZAERNANTE,
Foum ™ —1Nd,

FIXME: B[E]Y3 auto-regressive 2{t4EE8? ? ?

Over the years, researchers have built upon the original encoder-decoder
transformer architecture and developed several decoder-only models that have
proven highly effective in various natural language processing tasks. The most
notable models include the GPT family, which we briefly discussed in

Chapter [ch14] and in various other chapters throughout the book. GPT stands
for Generative Pre-trained Transformer. The GPT series comprises decoder-only
models pretrained on large-scale unsupervised text data and fine-tuned for
specific tasks such as text classification, sentiment analysis, question answering,

and summarization. The GPT models, including at the time of writing GPT-2, GPT-

b=
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3, and GPT-4, have shown remarkable performance in various benchmarks and

are currently the most popular architecture for natural language processing.

One of the most notable aspects of GPT models is their emergent properties.
Emergent properties are the abilities and skills that a model develops due to its
next-word prediction pretraining. Even though these models were taught only to
predict the next word, the pretrained models are capable of text summarization,
translation, question answering, classification, and more. Furthermore, these
models can perform new tasks without updating the model parameters via in-

context learning, which we'll discuss in more detail in Chapter [ch18].

Encoder-Decoder Hybrids

Next to the traditional encoder and decoder architectures, there have been
advancements in the development of new encoder-decoder models that leverage
the strengths of both components. These models often incorporate novel
techniques, pretraining objectives, or architectural modifications to enhance their
performance in various natural language processing tasks. Some notable

examples of these new encoder-decoder models include BART and T5 .

Encoder-decoder models are typically used for natural language processing tasks
that involve understanding input sequences and generating output sequences,
often with different lengths and structures. They are particularly good at tasks
where there is a complex mapping between the input and output sequences and
where it is crucial to capture the relationships between the elements in both
sequences. Some common use cases for encoder-decoder models include text

translation and summarization.

Tips: Encoder-decoder models, BERATBAESAIEES, HRIEREMN
ANFFFERBEFS, BEEEFENKENSN., EXAIEIRES
£S5, RUAHEE,

Terminology

All of these methods -- encoder-only , decoder-only ,and encoder-

decoder models -- are sequence-to-sequence models (often abbreviated as
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seq2seq ). While we refer to BERT-style methods as "encoder-only,"? the
description may be misleading since these methods also decode the embeddings
into output tokens or text during pretraining. In other words, both encoder-only

and decoder-only architectures perform decoding.

However, the encoder-only architectures, in contrast to decoder-only and encoder-
decoder architectures, don't decode in an autoregressive fashion. Autoregressive
decoding refers to generating output sequences one token at a time, conditioning
each token on the previously generated tokens. Encoder-only models do not
generate coherent output sequences in this manner. Instead, they focus on
understanding the input text and producing task-specific outputs, such as labels

or token predictions.

Contemporary Transformer Models

In brief, encoder-style models are popular for learning embeddings used in
classification tasks, encoder-decoder models are used in generative tasks where
the output heavily relies on the input (for example, translation and
summarization), and decoder-only models are used for other types of generative
tasks, including Q&A. Since the first transformer architecture emerged, hundreds
of encoder-only, decoder-only, and encoder-decoder hybrids have been

developed, as diagrammed in Figure 17.4.
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Microsoft DeBERTa (2020)

/ BERT (2018)
Encoder Google

~~_ALBERT (2020)
Meta RoBERTa (2019)

GPTJ (2021
Eleuther AL/~ GPT-NeoX (2022)

\_GPT-Neo (2023)

Original transformer

CodeX (2021)
InstructGPT (2022

OPT (2022
Meta Galactica (2022)

LLaMA (2023
Mefa  BART (2020)
Encoder-Decoder Flan-T5 (2022)
Google Flan-UL2 (2023)
T5 (2022)

Figure 17.4

While encoder-only models have gradually become less popular, decoder-only
models like GPT have exploded in popularity, thanks to breakthroughs in text
generation via GPT-3, ChatGPT, and GPT-4. However, encoder-only models are still
very useful for training predictive models based on text embeddings as opposed

to generating texts.

Exercises

17-1. As discussed in this chapter, BERT-style encoder models are pretrained using
masked language modeling and next-sentence prediction pretraining objectives.
How could we adopt such a pretrained model for a classification task (for

example, predicting whether a text has a positive or negative sentiment)?

17-2. Can we fine-tune a decoder-only model like GPT for classification?
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Chapter 18: Using and Fine-Tuning
Pretrained Transformers

What are the different ways to use and fine-tune pretrained large language

models?

ERMFRFING RS KRN =M E:

L. R EX
2. EFXEY) (RRFY)

(
3. AR RELSEX

The three most common ways to use and fine-tune pretrained LLMs include a
feature-based approach , in-context prompting ,and updating a
subset of the model parameters . First, most pretrained LLMs or language
transformers can be utilized without the need for further fine-tuning. For instance,
we can employ a feature-based method to train a new downstream model, such
as a linear classifier, using embeddings generated by a pretrained transformer.
Second, we can showcase examples of a new task within the input itself, which
means we can directly exhibit the expected outcomes without requiring any
updates or learning from the model. This concept is also known as prompting.
Finally, it's also possible to fine-tune all or just a small number of parameters to

achieve the desired outcomes.

The following sections discuss these types of approaches in greater depth.

Using Transformers for Classification Tasks

Let's start with the conventional methods for utilizing pretrained transformers:
training another model on feature embeddings, fine-tuning output layers, and
fine-tuning all layers. We'll discuss these in the context of classification. (We will
revisit prompting later in the section "In-Context Learning, Indexing, and Prompt

Tuning" on page .)

In the feature-based approach, we load the pretrained model and keep it "frozen,

meaning we do not update any parameters of the pretrained model. Instead, we
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treat the model as a feature extractor that we apply to our new dataset. We then

train a downstream model on these embeddings.

IR

L INEFIGRE A RIFEAENRS, FEMREATSE,
2. BINGRBANS IR, NATMERES.
3. IR ERAVHSAE LI SR TIFRE,

This downstream model can be any model like (random forests, XGBoost, and so
on), but linear classifiers typically perform best. This is likely because pretrained
transformers like BERT and GPT already extract high-quality, informative features
from the input data. These feature embeddings often capture complex
relationships and patterns, making it easy for a linear classifier to effectively
separate the data into different classes. Furthermore, linear classifiers, such as
logistic regression machines and support vector machines, tend to have strong
regularization properties. These regularization properties help prevent overfitting
when working with high-dimensional feature spaces generated by pretrained
transformers. This feature-based approach is the most efficient method since it
doesn't require updating the transformer model at all. Finally, the embeddings
can be precomputed for a given training dataset (since they don't change) when

training a classifier for multiple training epochs.

RN ENML R

1 AEEEFHINGRE,
2. REBHER E RS AR ERMNR AR, (E34%EDRBEBAN

ithoy B
3. D RFREEERENENNER, BETHLEESHFITEEEF
RES =

4 FFEA AFSIT R, BT 2 ISR D K814k,

Figure 18.1 illustrates how LLMs are typically created and adopted for
downstream tasks using fine-tuning. Here, a pretrained model, trained on a
general text corpus, is fine-tuned to perform tasks like German-to-English

translation.
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Training
“Ich liebe Pfannkuchen.” examples

"I love pancakes.”

“The weather is nice today.”

Pretrained
large language model

l

‘ “Das Wetter ist heute schoen.”

Finetuned
large language model
"Wo ist die naechste Bushaltestelle?” “Where is the bus station2”
npur
Figure 18.1

The conventional methods for fine-tuning pretrained LLMs include updating only
the output layers, a method we'll refer to as fine-tuning I, and updating all layers,

which we'll call fine-tuning Il.

MiEAE, 2R 2%:

1L AEMBEE, 779 fine-tuning 1,
2. BFFREE, #1279 fine-tuning Il,

Fine-tuning I is similar to the feature-based approach described earlier, but it
adds one or more output layers to the LLM itself. The backbone of the LLM
remains frozen, and we update only the model parameters in these new layers.
Since we don't need to backpropagate through the whole network, this approach

is relatively efficient regarding throughput and memory requirements.

In fine-tuning II , we load the model and add one or more output layers,
similarly to fine-tuning I. However, instead of backpropagating only through the
last layers, we update all layers via backpropagation, making this the most
expensive approach. While this method is computationally more expensive than
the feature-based approach and fine-tuning |, it typically leads to better modeling
or predictive performance. This is especially true for more specialized domain-

specific datasets.

Figure 18.2 summarizes the three approaches described in this section so far.
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(1) Feature-based approach (2) Fine-tuning | (3) Fine-tuning Il
Labeled training set Labeled training set Labeled training set
Pretrained Pretrained Pretrained
oricrm Rbd e pae
Output | | | all weight
embedding parameters
Classifier/ | Update / Update
“linear layer” One or more
fully connected layers
Better (3) Fine-tuning |l
2) Fine-tuning |
Modeling (2) Finetuning
performance (1) Feature-based
Worse
T
Faster Training efficiency Slower
Figure 18.2

In addition to the conceptual summary of the three fine-tuning methods
described in this section, Figure 18.2 also provides a rule-of-thumb guideline for
these methods regarding training efficiency. Since fine-tuning Il involves updating
more layers and parameters than fine-tuning |, backpropagation is costlier for
fine-tuning Il. For similar reasons, fine-tuning Il is costlier than a simpler feature-

based approach.

In-Context Learning, Indexing, and Prompt
Tuning

LLMs like GPT-2 and GPT-3 popularized the concept of in-context learning ,
often called zero-shot or few-shot learning in this context, which is illustrated in

Figure 18.3.

Translate the following German sentence into English:

Example 1:
German: “Ich liebe Pfannkuchen.”
English: “I love pancakes.”

Example 2:
German: “Das Wetter ist heute schoen.”
English: “The weather is nice today.”

Translate this sentence:
German: “Wo ist die naechste Bushaltestelle?”

Pretrained
large language model

Output l
“Where is the bus station2”

Figure 18.3
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As Figure 18.3 shows, in-context learning aims to provide context or examples of
the task within the input or prompt, allowing the model to infer the desired
behavior and generate appropriate responses. This approach takes advantage of
the model's ability to learn from vast amounts of data during pretraining, which

includes diverse tasks and contexts.

The definition of few-shot learning, considered synonymous with in-context
learning-based methods, differs from the conventional approach to few-shot

learning discussed in Chapter [ch03].
I B4 T8 RY few-shot learning 5 55 3 E1118H] few-shot learning A~[G],

For example, suppose we want to use in-context learning for few-shot German --
English translation using a large-scale pretrained language model like GPT-3. To
do so, we provide a few examples of German -- English translations to help the

model understand the desired task, as follows:

Translate the following German sentences into English:

Example 1:
German: "Ich liebe Pfannkuchen."

English: "I love pancakes."

Example 2:
German: "Das Wetter ist heute schoen.”

English: "The weather is nice today."

Translate this sentence:

German: "Wo ist die naechste Bushaltestelle?"

Generally, in-context learning does not perform as well as fine-tuning for certain
tasks or specific datasets since it relies on the pretrained model's ability to
generalize from its training data without further adapting its parameters for the

particular task at hand.

EFTFXEIEREESITEBIRE LATERNRE, ERERmTinlsk
BREMEIIZGEIEFZH, MEBABETSE-TABESH.
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However, in-context learning has its advantages. It can be particularly useful when
labeled data for fine-tuning is limited or unavailable. It also enables rapid
experimentation with different tasks without fine-tuning the model parameters in
cases where we don't have direct access to the model or where we interact only
with the model through a Ul or API (for example, ChatGPT).

ETXEINRR:

1?%ﬁ”ﬂﬁﬁ@?$7ﬁ%lﬂ? X EIERNER,
2. EAEEEHEIHOERE{UET Ul 8§ API 5ERIZEERT, BILAR
EEIHARHES.

Related to in-context learning is the concept of hard prompt tuning, where hard
refers to the non-differentiable nature of the input tokens. Where the previously
described fine-tuning methods update the model parameters to better perform

the task at hand, hard prompt tuning aims to optimize the prompt itself to

achieve better performance. Prompt tuning does not modify the model
parameters, but it may involve using a smaller labeled dataset to identify the best

prompt formulation for the specific task.

RmiaLiE, BMRREAME. FRERESY, MERLRTE (TEEs
— VBB ARFE R BIERIE), DARBIEIFRIMEE,

For example, to improve the prompts for the previous German -- English

translation task, we might try the following three prompting variations:

* Translate the German sentence '{german_sentence}' into English:

{english_translation}
e German: '{german_sentence}' English: {english_translation}

* From German to English: '{german_sentence}' -> {english_translation}

Rmia TR

-J\/ﬁ)&zﬂ, Z: g%?ﬁ*ﬁﬂ%é&

2. tEEREAUERENE, RACAEMEESLY, JeREIEENT
EAESRIERHZER
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Prompt tuning is a resource-efficient alternative to parameter fine-tuning.
However, its performance is usually not as good as full model fine-tuning, as it
does not update the model's parameters for a specific task, potentially limiting its
ability to adapt to task-specific nuances. Furthermore, prompt tuning can be labor
intensive since it requires either human involvement comparing the quality of the
different prompts or another similar method to do so. This is often known as hard
prompting since, again, the input tokens are not differentiable. In addition, other
methods exist that propose to use another LLM for automatic prompt generation

and evaluation.

Yet another way to leverage a purely in-context learning-based approach is

indexing , illustrated in Figure 18.4

A
Query External
document
l Most
ezt LN
Chunk 1 Chunk 2 Chunk 3
| | |

[J

Vector database

‘ .
synthesis

Figure 18.4

In the context of LLMs, we can think of indexing as a workaround based on in-
context learning that allows us to turn LLMs into information retrieval systems to
extract information from external resources and websites. In Figure 18.4, an
indexing module parses a document or website into smaller chunks, embedded
into vectors that can be stored in a vector database. When a user submits a query,
the indexing module computes the vector similarity between the embedded query
and each vector stored in the database. Finally, the indexing module retrieves the

top k most similar embeddings to synthesize the response.

#5|, BIRSIMEIR, ESAL NIRRT D ERIIR chunk, BRAZIRE,
A AFEE R EBURET .
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o SAPRXREWEN, RIIERITERAEWSBREETS T OERIENL

c &fa, RIIBERNREEWHKAEMUN A TMRARE, AL,

20 it

Parameter-Efficient Fine-Tuning

In recent years, many methods have been developed to adapt pretrained
transformers more efficiently for new target tasks. These methods are commonly
referred to as parameter-efficient fine-tuning , with the most popular

methods at the time of writing summarized in Figure 18.5.

“Hard” prompt tuning
Prompt modifications “Soft” prompt tuning

Prefix tuning

Reparameterization ~ —— Low rank adaptation (LoRA)

Figure 18.5

In contrast to the hard prompting approach discussed in the previous section,
soft prompting strategies optimize embedded versions of the prompts. While
in hard prompt tuning we modify the discrete input tokens, in soft prompt
tuning we utilize trainable parameter tensors instead. The idea behind soft
prompt tuning is to prepend a trainable parameter tensor (the "soft prompt") to
the embedded query tokens. The prepended tensor is then tuned to improve the

modeling performance on a target dataset using gradient descent.

i, AETEANER tokens; HRiRRiE, BAE T HAR tokens BY
HRA\

o MIBEMANERE, AR tokens BLRIN—TFIYIZRAIS £ tensor

(BIER$R1E)
o AEERBETREMMZ tensor, LARSTEBREES LRSS
AE.
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In Python-like pseudocode, soft prompt tuning can be described as

x = EmbeddinglLayer (input_ids)

X = concatenate([soft_prompt_tensor, x], dim=seq_len)

output = model(x)

where the soft_prompt_tensor has the same feature dimension as the
embedded inputs produced by the embedding layer. Consequently, the modified
input matrix has additional rows (as if it extended the original input sequence

with additional tokens, making it longer).

Another popular prompt tuning method is prefix tuning . Prefix tuningis
similar to soft prompt tuning, except that in prefix tuning, we prepend trainable
tensors (soft prompts) to each transformer block instead of only the embedded

inputs, which can stabilize the training.
I BIGHRAM, TEE transformer block BIRIN—0IIIERAS 2R tensor,

The implementation of prefix tuning is illustrated in the following pseudocode:

def transformer_block_with_prefix(x):

soft_prompt = FullyConnectedLayers(# Prefix
soft_prompt) # Prefix

x = concatenate([soft_prompt, x], # Prefix

dim=seq_len) # Prefix

residual = x

x = SelfAttention(x)

x = LayerNorm(x + residual)

residual = x

x = FullyConnectedLayers(x)
x = LayerNorm(x + residual)
return x

Let's break Listing 18.6 into three main parts: implementing the soft prompt,

concatenating the soft prompt (prefix) with the input, and implementing the rest
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of the transformer block.

First, the soft_prompt , atensor, is processed through a set of fully connected
layers. Second, the transformed soft prompt is concatenated with the main input,
x . The dimension along which they are concatenated is denoted by seq_len ,
referring to the sequence length dimension. Third, the subsequent lines of code
describe the standard operations in a transformer block, including self-attention,
layer normalization, and feed-forward neural network layers, wrapped around

residual connections.

As shown in Listing 18.6, prefix tuning modifies a transformer block by
adding a trainable soft prompt . Figure 18.6 further illustrates the difference

between a regular transformer block and a prefix tuning transformer block.
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Regular transformer block

|
ti
mulﬁhead self-attention j

| Skip
connection
[ Fully connected layer j
[ LayerNorm ]
Skip
[ Fully connected layers j connection

Q LayerNorm j

v

Transformer block with prefix
|

- ™
4
[ Fully connected layers ] @
[ Multihead self-attention ]

| Skip

connection

[ Fully connected layer j

@7‘

[ LayerNorm J
Skip
E Fully connected layers J connection

%)-
L ( LayeIrNorm ) J

v
Figure 18.6

Both soft prompt tuningand prefix tuning are considered parameter
efficient since they require training only the prepended parameter tensors and not

the LLM parameters themselves.

Adapter methods arerelatedto prefix tuning in that they add additional

parameters to the transformer layers. In the original adapter method, additional
fully connected layers were added after the multihead self-attention and existing

fully connected layers in each transformer block, as illustrated in Figure 18.7.
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Regular transformer block

|
li
( Multihead self-attention } \
)

| Skip

connection
[ Fully connected layer

[ LayerNorm ]

l—

[ Fully connected layers ]

Skip
connection

Q LayerlNorm ] J

v

Transformer block with adapters
|

—
m Multihead self-attention J \
v

Skip
connection

( Fully connected layer ]
@7\ !
I ( Nonlinear activation J

Adapter layers

( Fully connected layer ]

( LayerNorm ) }
T [ Fully connected layer ]
( Fully connected layers ]
v

{ LoyerlNorm ) J

v

Figure 18.7

Only the new adapter layers are updated when training the LLM using the original
adapter method, while the remaining transformer layers remain frozen. Since the
adapter layers are usually small -- the first fully connected layer in an adapter
block projects its input into a low-dimensional representation, while the second
layer projects it back into the original input dimension -- this adapter method is

usually considered parameter efficient.
| ReE#H adapter B, HitBRITHLE.

In pseudocode, the original adapter method can be written as follows:
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def transformer_block_with_adapter(x):

residual =

x = SelfAttention(x)

x = FullyConnectedLayers(x) # Adapter

x = LayerNorm(x + residual)
residual =

x = FullyConnectedLayers(x)

x = FullyConnectedLayers(x) # Adapter
x = LayerNorm(x + residual)
return x

Low-rank adaptation(LoRA) , another popular parameter-efficient fine-tuning
method worth considering, refers to reparameterizing pretrained LLM weights
using low-rank transformations. LoRA is related to the concept of low-rank
transformation , a technique to approximate a high-dimensional matrix or
dataset using a lower-dimensional representation. The lower-dimensional
representation (or low-rank approximation ) is achieved by finding a
combination of fewer dimensions that can effectively capture most of the
information in the original data. Popular low-rank transformation techniques

include principal component analysis and singular vector decomposition.

B#%IER (LoRA), B—MRTHSHENRHMBRLE, ERFER, EBNEE
REHRTRERS AT LV RE.

* LoRA SEMERIVE SR, BMERE—MEA, ERREEEZRER
m%l%x.ﬂ)h%éﬁ%ﬁlliﬁhﬂ%

o EMEHR (SRFKIIM) & ?ﬁﬂ%"\E’\Jéﬁlﬁéﬂé‘ﬂ%ﬁ&*ﬁﬁﬁﬁtﬁﬂﬁ
PEIAEDESR.

o MTHRMRERIABREERND DT RED R,

For example, suppose AW represents the parameter update for a weight matrix
of the LLM with dimension R4*B we can decompose the weight update matrix
into two smaller matrices: AW = W4 Wg, where W4 € RAP and W4 €

RA*B, Here, we keep the original weight frozen and train only the new matrices

W4 and Wg.
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How is this method parameter efficient if we introduce new weight matrices?
These new matrices can be very small. For example, if A= 25 and B =50, then the
size of AW is 25 X 50 = 1,250. If h=5, then W 4 has 125 parameters, Wg has
250 parameters, and the two matrices combined have only 125 + 250 = 375

parameters in total.

After learning the weight update matrix, we can then write the matrix

multiplication of a fully connected layer, as shown in this pseudocode:

def lora_forward_matmul(x):
h =x . W # Regular matrix multiplication
h += x . (W_A . W_B) * scalar

return h

In Listing [matrixMultiplication], scalar is a scaling factor that adjusts the

magnitude of the combined result (original model output plus low-rank
adaptation). This balances the pretrained model's knowledge and the new task-

specific adaptation.

According to the original paper introducing the LoRA method, models using LoRA
perform slightly better than models using the adapter method across several task-
specific benchmarks. Often, LoRA performs even better than models fine-tuned

using the fine-tuning Il method described earlier.

[RIGIRE LoRA AIERIEXXIEE, (£ LorRA RBIES MESHEREL
BRI T ERERCER 75 ARREL, B, LoRA BEELLRIEREIRRY fine-
tuning Il 3EHEREEMEEEE 1T,

Reinforcement Learning with Human
Feedback

The previous section focused on ways to make fine-tuning more efficient.
Switching gears, how can we improve the modeling performance of LLMs via fine-

tuning?
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The conventional way to adapt or fine-tune an LLM for a new target domain or
task is to use a supervised approach with labeled target data. For instance, the

fine-tuning II approach allows us to adapt a pretrained LLM and fine-tune it
on a target task such as sentiment classification, using a dataset that contains

texts with sentiment labels like positive, neutral, and negative.
| “Emn, AERENERREE, % LM NERHES

Supervised fine-tuning is a foundational step in training an LLM. An additional,
more advanced step is reinforcement learning with human feedback
(RLHF) , which can be used to further improve the model's alignment with
human preferences. For example, ChatGPT and its predecessor, InstructGPT, are

two popular examples of pretrained LLMs (GPT-3) fine-tuned using RLHF.

| Bw2s, BARRE, % LM BUERAXRT,

In RLHF , a pretrained model is fine-tuned using a combination of supervised
learning and reinforcement learning. This approach was popularized by the
original ChatGPT model, which was in turn based on InstructGPT. Human
feedback is collected by having humans rank or rate different model outputs,
providing a reward signal. The collected reward labels can be used to train a
reward model that is then used to guide the LLMs' adaptation to human
preferences. The reward model is learned via supervised learning, typically using a
pretrained LLM as the base model, and is then used to adapt the pretrained LLM
to human preferences via additional fine-tuning. The training in this additional
fine-tuning stage uses a flavor of reinforcement learning called proximal policy

optimization ( PPO ).

£ RLHF 1, {EREEZIFRAFIBESHRIE, LR LLM DAERLA S
it

o ARREHINE, BUAXNARERBLNHIFN T, RHEEME

oi

5o
o WERINRRIRFERIBTIIGRMER, RAEATES LM ERAZ
Rt

o XERIBEREFI)FY), BEEATIZ LM EAEMER, AE
] ] LLM DAEN A ERYT.
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o TEEMSMOGUAMER, {EFH—F9FR7 proximal policy optimization 521t
FIAREHITIN.

RLHF uses a reward model instead of training the pretrained model on the human
feedback directly because involving humans in the learning process would create
a bottleneck since we cannot obtain feedback in realtime.

ERARMREMFZEEREARRIFLINGTINGRE, BAERAEXNSE
JAREREIERS, RAFTEIHRERIGE,

Adapting Pretrained Language Models

While fine-tuning all layers of a pretrained LLM remains the gold standard for
adaption to new target tasks, several efficient alternatives exist for leveraging
pretrained transformers. For instance, we can effectively apply LLMs to new tasks
while minimizing computational costs and resources by utilizing feature-based

methods, in-context learning, or parameter-efficient fine-tuning techniques.

The three conventional methods -- feature-based approach, fine-tuning I, and
fine-tuning Il -- provide different computational efficiency and performance trade-
offs. Parameter-efficient fine-tuning methods like soft prompt tuning, prefix
tuning, and adapter methods further optimize the adaptation process, reducing
the number of parameters to be updated. Meanwhile, RLHF presents an
alternative approach to supervised fine-tuning, potentially improving modeling

performance.

=MERARE - HIEERE. 5 F60E 1 - #E T AR ERERNE
BETNT

o SHBXNERE, WERTEREN. RNNERSRSE, H—F
ML TERIRE, RO TEEERNSHYUE,
e RLHF M T —MBEREBRHIBENGE, FIERESERIERE,

In sum, the versatility and efficiency of pretrained LLMs continue to advance,
offering new opportunities and strategies for effectively adapting these models to

a wide array of tasks and domains. As research in this area progresses, we can
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expect further improvements and innovations in using pretrained language

models.

Exercises

18-1. When does it make more sense to use in-context learning rather than fine-

tuning, and vice versa?

18-2. In prefix tuning, adapters, and LoRA, how can we ensure that the model

preserves (and does not forget) the original knowledge?
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Chapter 19: Evaluating Generative
Large Language Models

What are the standard metrics for evaluating the quality of text generated by

large language models, and why are these metrics useful?

Perplexity , BLEU , ROUGE ,and BERTScore are some of the most common
evaluation metrics used in natural language processing to assess the performance
of LLMs across various tasks. Although there is ultimately no way around human
quality judgments, human evaluations are tedious, expensive, hard to automate,
and subjective. Hence, we develop metrics to provide objective summary scores

to measure progress and compare different approaches.

xé’;‘, EEJBEALIHE, B2, AL HE, BNFEH, BENRMERSE,
%EF&—‘EEME’\JWME?EM, FGERBIAIERE,

This chapter discusses the difference between intrinsic and extrinsic performance
metrics for evaluating LLMs, and then it dives deeper into popular metrics like
BLEU, ROUGE, and BERTScore and provides simple hands-on examples for

illustration purposes.

AE, TENE, WE{ER Perplexity , BLEU , ROUGE , and
BERTScore 3EiF{d LLM BYTERE,

Evaluation Metrics for LLMs

The perplexity metric is directly related to the loss function used for
pretraining LLMs and is commonly used to evaluate text generation and text
completion models. Essentially, it quantifies the average uncertainty of the model
in predicting the next word in a given context -- the lower the perplexity, the

better.

RRE, SHERMELELTXT, FNT—MINTFITHELE, EE
g, REHT,
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The bilingual evaluation understudy (BLEU) score is a widely used
metric for evaluating the quality of machine-generated translations. It measures
the overlap of n-grams between the machine-generated translation and a set of
human-generated reference translations. A higher BLEU score indicates better

performance, ranging from 0 (worst) to 1 (best).

BLEU @itz ERENE ISR, EEHENHREES—4HATEEN
n-gram E&TEE, BLEU oS, RLEhEREHF, S29CEMO (T
=) 31 (8REF).

The recall-oriented understudy for gisting evaluation (ROUGE) score
is @ metric primarily used for evaluating automatic summarization (and
sometimes machine translation) models. It measures the overlap between the

generated summary and reference summaries.

ROUGE BiF{hBEEREE AER, EHEERFES—AATRE
HMESEE,

We can think of perplexity as an intrinsic metric and BLEU and ROUGE as
extrinsic metrics . To illustrate the difference between the two types of
metrics, think of optimizing the conventional cross entropy to train an image
classifier. The cross entropy is a loss function we optimize during training, but our
end goal is to maximize the classification accuracy. Since classification accuracy
cannot be optimized directly during training, as it's not differentiable, we
minimize the surrogate loss function like the cross entropy. Minimizing the cross

entropy loss more or less correlates with maximizing the classification accuracy.

BT LOSHEREMA— mEssts , M BLEU F1 ROUGE fI8 shsds

{7

o NTRAXMMIEIRZBINES, FIAZRMAERIIZIEHIZRE

1 /\7!:““
o XXM@R—THRINGIRPRARMKIRE, ERMNNELENER
%ﬁé&ﬁ%

o HTOREMERFEREIGIRPERNNL, RAERZAMN, Flt
ﬁﬂﬁ¢%§ﬁh%Mﬂ,Wﬁ§mo
o BRMERXIEIMK, SHERAND KEREREX,
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Perplexity is often used as an evaluation metric to compare the performance
of different language models, but it is not the optimization target during training.
BLEU and ROUGE are more related to classification accuracy, or rather precision
and recall. In fact, BLEU is a precision-like score to evaluate the quality of a

translated text, while ROUGE is a recall-like score to evaluate summarized texts.

HEE, BERTHETEIESRENERE, EFZIFNERT.

e BLEU fll ROUGE 59K ERFTBEX, E B AR, SHEHENZRE
FEX,

o EX |, BLEU 2— T HRUTFHBHENITY, BFHMHEIEXANRE,
il ROUGE B— M EMFBERIEMNITY, BFHEREXANRE.

The following sections discuss the mechanics of these metrics in more detail.

Perplexity

Perplexity is closely related to the cross entropy directly minimized during

training, which is why we refer to perplexity as an intrinsic metric.

Perplexity is defined as 27 (P9/" \where H(p, q) is the cross entropy
between the true distribution of words p and the predicted distribution of words
g, and n is the sentence length (the number of words or tokens) used to
normalize the score. As cross entropy decreases, perplexity also decreases—the
lower the perplexity, the better. While we typically compute cross entropy using a
natural logarithm, we calculate cross entropy and perplexity with a base-2
logarithm for the intuitive relationship to hold. (However, whether we use a base-

2 or natural logarithm is only a minor implementation detail.)

HEE, SRXBEFRAX, ELFITSERARNEER, FIXME: XX
ik, IBRE 72

In practice, since the probability for each word in the target sentence is always 1,
we compute the cross entropy as the logarithm of the probability scores returned
by the model we want to evaluate. In other words, if we have the predicted
probability score for each word in a sentence 8, we can compute the perplexity

directly as follows:
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Perplexity(s) — 2_% log, (p(s))

where s is the sentence or text we want to evaluate, such as "The quick brown fox
jumps over the lazy dog," p(s) is the probability scores returned by the model,
and n is the number of words or tokens. For example, if the model returns the
probability scores [0.99, 0.85,0.89,0.99, 0.99, 0.99,0.99, 0.99], the
perplexity is:

2= % Zz log, p(w;)

— 9—#-10g5(0.990.85x0.890.990.990.990.99x0.99)

=1.043

If the sentence was "The fast black cat jumps over the lazy dog," with probabilities
[0.99, 0.65, 0.13, 0.05, 0.21, 0.99, 0.99, 0.99], the corresponding perplexity would
be 2.419.

You can find a code implementation and example of this calculation in the
supplementary/q19-evaluation-llms subfolder at

https://github.com/rasbt/MachineLearning-QandAl-book.

BLEU Score

BLEU is the most popular and most widely used metric for evaluating translated
texts. It's used in almost all LLMs capable of translation, including popular tools

such as OpenAl's Whisper and GPT models.

BLEU is a reference-based metric that compares the model output to human-
generated references and was first developed to capture or automate the essence
of human evaluation. In short, BLEU measures the lexical overlap between the

model output and the human-generated references based on a precision score.

BLEU 2— 1 ETHRAERNIER, EEERERMES ATEMRSEZERE
LERREE.

In more detail, as a precision-based metric, BLEU counts how many words in the
generated text (candidate text) occur in the reference text divided by the
candidate text length (the number of words), where the reference text is a sample

translation provided by a human, for example. This is commonly done for n-grams
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rather than individual words, but for simplicity, we will stick to words or 1-grams.

(In practice, BLEU is often computed for 4-grams.)

Figure 19.1 demonstrates the BLEU score calculation, using the example of
calculating the 1-gram BLEU score. The individual steps in Figure 19.1 illustrate
how we compute the 1-gram BLEU score based on its individual components, the
weighted precision times a brevity penalty. You can also find a code
implementation of this calculation in the supplementary/q15-text-augment

subfolder at https://github.com/rasbt/MachineLearning-QandAl-book.

(O) original = "Der schnelle braune Fuchs sprang ueber den faulen Hund" Sentence fo
l translate

(1) Count number of candidate words contained in the reference divided by the candidate length

reference = " [l quick (RN A8 jumped (=4 S 1azy (el " Precision
candidate = " QIS fast |2l En leaped (oo il dog 8 =6/8=0.75

(2) Problem: Maximum precision for repeated text

reference = "The quick brown fox jumped over the lazy dog" .
——r—r——t 1 Precision
candidate = "fox fox fox fox fox fox fox fox" -8/8=1.0

(3) Fix: Clip the count by the minimum number of times the word occurs in the reference and candidate:
« Sum the clipped counts for all words in the candidate sentence
« Sum the counts for all words in the candidate sentence
« Calculate the weighted precision by dividing the total clipped count by the total count

reference = "The quick brown fox jumped over the lazy dog"

o WeightedPrecision
candidate =  "fox fox fox fox fox fox fox fox" -1/8=0.13
reference = " [l quick (2R A4 jumped (V=4 S 1azy [elo) " WeightedPrecision
candidate Bl The RNl brown | fox REEETRover] the dog | =6/8=0.75

|

(4) Since for short translations it would be easier to score high, there is an additional brevity penalty:
BrevityPenalfy = min ('| ,e] - Raferancsl.sngfh/Candida'elangrh) =0.88

reference = " [l quick (RN A4 jumped (=4 S 1azy (el " BrevityPenalty x WeightedPrecision
candidate = " [l fast {240 Riod leaped [07=5 fEi dog | =0.88x0.75=0.66

Figure 19.1

BLEU has several shortcomings, mostly owing to the fact that it measures string
similarity, and similarity alone is not sufficient for capturing quality. For instance,
sentences with similar words but different word orders might still score high, even
though altering the word order can significantly change the meaning of a
sentence and result in poor grammatical structure. Furthermore, since BLEU relies
on exact string matches, it is sensitive to lexical variations and is incapable of
identifying semantically similar translations that use synonyms or paraphrases. In
other words, BLEU may assign lower scores to translations that are, in fact,

accurate and meaningful.

2158 11, 3239

b=

M


https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | FRAERIFG AR30HE (5 il & e #ti:) | https://ningg.top/Machine-Learning-Q-and-Al/

BLEU B T/LTMRR, EEEHTEGENZRFHBMBALE, MEBEMES
B RMHRRE.

o flal, ABERURIEEARREFNGFAESFSIRS, BMEXZEIERFA
e EE RO FNEXASBRERREESN,

 Itt%h, ETF BLEU {REITARHARYFRTSBILE, ©XNaiCEMREVE, T
EIRAME R B SOa 3R SCRIIE AR BERE.

o HANIEY, BLEU FIRERAFRLELIr LEMBREXMENE, HERREN

VAN
ak -

The original BLEU paper found a high correlation with human evaluations, though

this was disproven later.

[RI88Y BLEU IEX A ME ATIHERRESMNEXYE, REGKFIEAZEIR
;8

Is BLEU flawed? Yes. Is it still useful? Also yes. BLEU is a helpful tool to measure or
assess whether a model improves during training, as a proxy for fluency. However,
it may not reliably give a correct assessment of the quality of the generated
translations and is not well suited for detecting issues. In other words, it's best

used as a model selection tool, not a model evaluation tool.

RE BLEU H.LAERS, BEMARAMEM, FTMEDRIBEIREREE
SUMEEEEISTNEGE ., AT, CATETATREITEERIROR
2, FEFESRNTE, ROEH, CREAEEREETE, TFeR
HHEIA,

At the time of writing, the most popular alternatives to BLEU are METEOR and

COMET (see the References section at the end of this chapter for more details).

BEI, RimiTHEM BLEU BYF54%K2 METEOR 1 COMET (RAZEREM
"METEOR #] COMET" #8497, THREZMT).

ROUGE Score
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While BLEU is commonly used for translation tasks, ROUGE is a popular metric for

scoring text summaries.
| BLEV EREFBIRES, (B ROUGE B—PRITHITH XAMBAIIEIT,

There are many similarities between BLEU and ROUGE. The precision-based BLEU
score check shows how many words in the candidate translation occur in the
reference translation. The ROUGE score also takes a flipped approach, checking
how many words in the reference text appear in the generated text (here typically
a summarization instead of a translation); this can be interpreted as a recall-based

score.

EHCRYSCILRE ROUGE 1T F1 5, RRBEE (BENXAHEHMS DT
i8) MFERE (REXAPHDSDMNE) RNTFIE.

Modern implementations compute ROUGE as an F1 score that is the harmonic

mean of recall (how many words in the reference occur in the candidate text) and
precision (how many words in the candidate text occur in the reference text). For
example, Figure 19.2 shows a 1-gram ROUGE score computation (though in

practice, ROUGE is often computed for bigrams, that is, 2-grams).

(O) reference = "The quick brown fox jumps over the lazy dog" Human-generated summary of long text
candidate = "The fox jumps over the dog” Model-generated summary of same text

(1) Caleulate recall

reference = "The quick brown fox jumps over the lazy dog"

e, Recall = 6/9 = 0.67

candidate = "The fox jumps over the dog"

(2) Calculate precision

reference = "The quick brown fox jumps over the lazy dog"

m.

Precision = 6/6 = 1.00
candidate = "The fox jumps over the dog"

(3) Calculate F1 score
precision x recall 1%6/9

FI =2 x — =2x =
precision + recall 1+6/9

Figure 19.2

0.8

There are other ROUGE variants beyond ROUGE-1 (the F1 score--based ROUGE

score for 1-grams):
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®* ROUGE-N Measures the overlap of n-grams between the candidate and
reference summaries. For example, ROUGE-1 would look at the overlap of
individual words (1-grams), while ROUGE-2 would consider the overlap of 2-

grams (bigrams).

®* ROUGE-L Measures the longest common subsequence (LCS) between the
candidate and reference summaries. This metric captures the longest co-
occurring in-order subsequence of words, which may have gaps in between

them.

®* ROUGE-S Measures the overlap of skip-bigrams, or word pairs with a flexible
number of words in between them. It can be useful to capture the similarity

between sentences with different word orderings.

ROUGE shares similar weaknesses with BLEU. Like BLEU, ROUGE does not account
for synonyms or paraphrases. It measures the n-gram overlap between the
candidate and reference summaries, which can lead to lower scores for
semantically similar but lexically different sentences. However, it's still worth
knowing about ROUGE since, according to a study, all papers introducing new
summarization models at computational linguistics conferences in 2021 used it,

and 69 percent of those papers used only ROUGE.

ROUGE 5 BLEU B S ., 5 BLEU —#, ROUGE FEEE AR
X, BEEREXANSEXSH n-gram ES, XATEESBUIENELUER
CARMNGFHREoBIR. A, T ROUGE AREMEN, RNIRIE
—IRAR, 2021 FiIHRIBESFESN ENBNFAEMBEEERBERTE,
Hrh 69% KIIEXX R {EMA T ROUGE,

BERTScore

Another more recently developed extrinsic metric is BERTScore .

For readers familiar with the inception score for generative vision models,
BERTScore takes a similar approach, using embeddings from a pretrained model
(for more on embeddings, see Chapter [ch01]). Here, BERTScore measures the
similarity between a candidate text and a reference text by leveraging the
contextual embeddings produced by the BERT model (the encoder-style

transformer discussed in Chapter [ch17]).
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The steps to compute BERTScore are as follows:

1. Obtain the candidate text via the LLM you want to evaluate (PaLM, LLaMA,
GPT, BLOOM, and so on).

2. Tokenize the candidate and reference texts into subwords, preferably using

the same tokenizer used for training BERT.

3. Use a pretrained BERT model to create the embeddings for all tokens in the

candidate and reference texts.

4. Compare each token embedding in the candidate text to all token embeddings

in the reference text, computing their cosine similarity.

5. Align each token in the candidate text with the token in the reference text that

has the highest cosine similarity.

6. Compute the final BERTScore by taking the average similarity scores of all

tokens in the candidate text.

Figure 19.3 further illustrates these six steps. You can also find a computational

example in the subfolder/q15-text-augment subfolder at

https://github.com/rasbt/MachineLearning-QandAl-book.

(2) Pass tokenized words (3) Obtain embeddings
to BERT model

(1) Reference BERT
The cat jumped ieek]

Candidate BERT
A cat leaped high model

- i

(4) Compute cosine similarities
between all embeddings

-—

(6) Compute the BERTScore

by averaging: cat
(0.63+0.72+070+070) /4
= 0.6875 leaped

high 0.55 0.69 0.70

& >
R & €Qz
¥

(5) Compute maximum similarities

Figure 19.3

BERTScore can be used for translations and summaries, and it captures the

semantic similarity better than traditional metrics like BLEU and ROUGE. However,
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BERTScore is more robust in paraphrasing than BLEU and ROUGE and captures
semantic similarity better due to its contextual embeddings. Also, it may be
computationally more expensive than BLEU and ROUGE, as it requires using a
pretrained BERT model for the evaluation. While BERTScore provides a useful
automatic evaluation metric, it's not perfect and should be used alongside other

evaluation techniques, including human judgment.

Surrogate Metrics

All metrics covered in this chapter are surrogates or proxies to evaluate how
useful the model is in terms of measuring how well the model compares to
human performance for accomplishing a goal. As mentioned earlier, the best way
to evaluate LLMs is to assign human raters who judge the results. However, since
this is often expensive and not easy to scale, we use the aforementioned metrics
to estimate model performance. To quote from the InstructGPTpaper "Training
Language Models to Follow Instructions with Human Feedback": "Public NLP
datasets are not reflective of how our language models are used ... [They] are

designed to capture tasks that are easy to evaluate with automatic metrics."

REEIEIR R B IR B SCARRIMAIA BIEE . [EEMInstructGPTIEX AR, AFF
RINLPEIESR A M RER S RN RiZR, ENEERTET B
fLIEtmT(ERIESS .

Besides perplexity, ROUGE, BLEU, and BERTScore, several other popular

evaluation metrics are used to assess the predictive performance of LLMs.

Exercises

19-1. In step 5 of Figure 19.3, the cosine similarity between the two embeddings

of "cat"? is not 1.0, where 1.0 indicates a maximum cosine similarity. Why is that?

19-2. In practice, we might find that the BERTScore is not symmetric. This means
that switching the candidate and reference sentences could result in different

BERTScores for specific texts. How could we address this?
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Chapter 20: Stateless and Stateful
Training

What is the difference between stateless and stateful training workflows in the

context of production and deployment systems?

Stateless training and stateful training refer to different ways of training a

production model.

Tips: TIREINE stateless Ml BRGNS stateful , BFFHARATII
FHIN; SREFRERN, SEZEAMHE.

Stateless (Re)training

In stateless training, the more conventional approach, we first train an initial
model on the original training set and then retrain it as new data arrives. Hence,

stateless training is also commonly referred to as stateless retraining.

Tips: TREINEGR, BFRING—T mags , ARERBIENAN, ZF
ZAIREL AIAERINARE Wk , PIGIRELE R¥a | AR tF

TR RE

As Figure 20.1 shows, we can think of stateless retraining as a sliding window
approach in which we retrain the initial model on different parts of the data from

a given data stream.

Tips: B, AR B QPA , FER 2 HTvA, mEn 2ET
MmppiRR JIZRAY; NISGFREERS, SEE BsHEn 8L
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Data stream

N

Initial dataset

| |
Model 1 Most recent data

Y

(initial model)

Model 2 | |
Model 3

Figure 20.1

For example, to update the initial model in Figure 20.1 (Model 1) to a newer
model (Model 2), we train the model on 30 percent of the initial data and 70

percent of the most recent data at a given point in time.

Stateless retraining is a straightforward approach that allows us to adapt the
model to the most recent changes in the data and feature-target relationships via
retraining the model from scratch in user-defined checkpoint intervals. This
approach is prevalent with conventional machine learning systems that cannot be
fine-tuned as part of a transfer or self-supervised learning workflow (see

Chapter [ch02]).

Tips: fRRRMREL, PFTIRTINGR, LEBRIT, LEU REMsk . BERA
F, REMERLE fE B

For example, standard implementations of tree-based models, such as random
forests and gradient boosting (XGBoost, CatBoost, and LightGBM), fall into this

category.

Stateful Training

In stateful training, we train the model on an initial batch of data and then update

it periodically (as opposed to retraining it) when new data arrives.

Tips: BREHING, TLUARRE fEgm , IREE > iR > f&s
> .., BRBETRHEESINME.
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As illustrated in Figure 20.2, we do not retrain the initial model (Model1.0) from
scratch; instead, we update or fine-tune it as new data arrives. This approach is
particularly attractive for models compatible with transfer learning or self-

supervised learning.

Initial datoset 4|

[ | I I |
Model 1.0 Model 1.1 Model 1.2 Model 1.2
(initial model)

Figure 20.2

The stateful approach mimics a transfer or self-supervised learning workflow
where we adopt a pretrained model for fine-tuning. However, stateful training
differs fundamentally from transfer and self-supervised learning because it
updates the model to accommodate concept, feature, and label drifts. In contrast,
transfer and self-supervised learning aim to adopt the model for a different
classification task. For instance, in transfer learning, the target labels often differ.

In self-supervised learning, we obtain the target labels from the dataset features.

Tips: BIRESRVINL, IR #8%5 . BRE®S , ARREES; RSN
%, SEMRE, NENMHEE. 5. HENRS; mEBEs). BEEY
3, BRETWIIZGRE, #1TH0AE,

One significant advantage of stateful training is that we do not need to store data
for retraining; instead, we can use it to update the model as soon as it arrives.
This is particularly attractive when data storage is a concern due to privacy or

resource limitations.

Tips: BRSHING, FREFMEHIE, TURNEMER; X7E B 5
BEER NERT, 1538H.

Exercises

20-1. Suppose we train a classifier for stock trading recommendations using a
random forest model, including the moving average of the stock price as a

feature. Since new stock market data arrives daily, we are considering how to
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update the classifier daily to keep it up to date. Should we take a stateful training

or stateless retraining approach to update the classifier?

» Answer, Click to expand

20-2. Suppose we deploy a large language model (transformer) such as ChatGPT
that can answer user queries. The dialogue interface includes thumbs-up and
thumbs-down buttons so that users can give direct feedback based on the
generated queries. While collecting the user feedback, we don't update the model
immediately as new feedback arrives. However, we are planning to release a new
or updated model at least once per month. Should we use stateless or stateful

retraining for this model?
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Chapter 21: Data-Centric Al

What is data-centric Al, how does it compare to the conventional modeling

paradigm, and how do we decide whether it's the right fit for a project?

Data-centric Al is a paradigm or workflow in which we keep the model training
procedure fixed and iterate over the dataset to improve the predictive
performance of a model. The following sections define what data-centric Al means

in more detail and compare it to conventional model-centric approaches.

Tips: #iEEz AI 2—MEXHITER, EPENFRFERIZGIER
T, B EAEURERIESERAITMEEE,

Data-Centric vs. Model-Centric Al

In the context of data-centric Al, we can think of the conventional workflow, which
is often part of academic publishing, as model-centric Al. However, in an
academic research setting, we are typically interested in developing new methods
(for example, neural network architectures or loss functions). Here, we consider
existing benchmark datasets to compare the new method to previous approaches

and determine whether it is an improvement over the status quo.

Tips: £ #4ERz) AI B LT, HEMTUSERNZERBRAAEEY
N ERIER AL

o EFAMRER, HNBEXNFEIAE (FIA0H2RELEM IRk
BRIER) RS,

o HEZEIMANBEEIBE, UK E5 RGNS E, HRTER
BEM,
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In a pure data-centric workflow, we
reuse the algorithm and tuning parameters

9\, L Machine learning
\_,v——_’\;'_’ _’/\/ I || B

Data collection  Data analysis

Model traini i i
and labeling and preprocessing odel training Tuning Evaluation Deployment

Data-centric workflow

In a pure model-centric workflow,
this remains mostly fixed

Machine learning
I o. algorithm I — /\/ — IIII — 0
.
Data collection  Data analysis Model training Tuning Evaluation Deployment

and labeling  and preprocessing \—/

Model-centric workflow

Figure 21.1

While data-centric Alis a relatively new term, the idea behind it is not. Many
people I've spoken with say they used a data-centric approach in their projects
before the term was coined. In my opinion, data-centric Al was created to make
"caring about data quality"? attractive again, as data collection and curation are
often considered tedious or thankless. This is analogous to how the term deep

learning made neural networks interesting again in the early 2010s.

Tips: B HIEE Al B2—TAMNBIMBANE, BEEEENESHTH.

o W AEIFEK, EMIER #ERx AT ZR1, MBIIELEEPER
T BUEIRED AL .

o TEHEXR, HEEH AI BFRIE, BATIiL XEERE BRXEEER
5170, BABREEENRZEBRERIANESREDNSITEXNMN.

o XEMTF REHS FE2010F AL MK TIF B BFER,

Do we need to choose between data-centric and model-centric Al, or can we rely
on both? In short, data-centric Al focuses on changing the data to improve
performance, while model-centric approaches focus on modifying the model to
improve performance. Ideally, we should use both in an applied setting where we
want to get the best possible predictive performance. However, in a research
setting or an exploratory stage of an applied project, working with too many
variables simultaneously is messy. If we change both model and data at once, it's

hard to pinpoint which change is responsible for the improvement.

Tips: IR ERTEAE WEEm AT F SRR AT ZEME%EE, & R
i8] ARRES 7 & 2

b=
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e BMEZ, HEEH Al X THTZEIBUUIRSIHERE, M &E8IES AL
T EER IR S 1EEE,
o IBRAERT, HNNZEMERME,

It is important to emphasize that data-centric Al is a paradigm and workflow, not

a particular technique. Data-centric Al therefore implicitly includes the following:

Analyses and modifications of training data, from outlier removal to missing

data imputation
¢ Data synthesis and data augmentation techniques
* Data labeling and label-cleaning methods

* The classic active learning setting where a model suggests which data points
to label

Tips: EEMEEEE, MEED Al E—MERTRE, MAE—HEE
HRAR, EEMEENTRE:

o JEGEBIRADIAER, MBREEEFREIERREIERG
o BRI EEIEERAR
o HURIMENIREE IR A
o REMFMFIIRE, HPREEWPLLIER/RFTEME

We consider an approach data centric if we change only the data (using the

methods listed here), not the other aspects of the modeling pipeline.

In machine learning and Al, we often use the phrase "garbage in, garbage out"?
meaning that poor-quality data will result in a poor predictive model. In other

words, we cannot expect a well-performing model from a low-quality dataset.

I've observed a common pattern in applied academic projects that attempt to use
machine learning to replace an existing methodology. Often, researchers have
only a small dataset of examples (say, hundreds of training examples). Labeling
data is often expensive or considered boring and thus best avoided. In these
cases, the researchers spend an unreasonable amount of time trying out different
machine-learning algorithms and model tuning. To resolve this issue, investing

additional time or resources in labeling additional data would be worthwhile.
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Tips:

o BE, ARAR, RE— JuueE (W, LB TIIGESR),
o MABIEEER 28 WMANR 0 , BHLtRTFESR,
'EB%%RT,ﬁﬁkm%ﬁ?*ﬁﬁ%ﬁﬁ%%ﬁXﬁ%ﬂ%?ﬂ%

EARELEN
o ATHRZXMEE, REFMIMINENFRE mEES0HE BE2EM
18RY,

The main advantage of data-centric Al is that it puts the data first so that if we
invest resources to create a higher-quality dataset, all modeling approaches will

benefit from it downstream.

Tips: #URIRED Al NEBRMBET, EHBEREEN, RLMRENRE
RERLEESHENBIES, MAERASEHRIEMPZ S

Recommendations

Taking a data-centric approach is often a good idea in an applied project where
we want to improve the predictive performance to solve a particular problem. In
this context, it makes sense to start with a modeling baseline and improve the
dataset since it's often more worthwhile than trying out bigger, more expensive

models.

If our task is to develop a new or better methodology, such as a new neural
network architecture or loss function, a model-centric approach might be a better
choice. Using an established benchmark dataset without changing it makes it
easier to compare the new modeling approach to previous work. Increasing the
model size usually improves performance, but so does the addition of training
examples. Assuming small training sets (< 2k) for classification, extractive question
answering, and multiple-choice tasks, adding a hundred examples can result in

the same performance gain as adding billions of parameters.

In a real-world project, alternating between data-centric and model-centric modes
makes a lot of sense. Investing in data quality early on will benefit all models.
Once a good dataset is available, we can begin to focus on model tuning to

improve performance.
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Tips: ZEXFRBE R, REEA BiERz M #REx) KRAZHFEXMN.

o RHIRRET suEmE BEMERERT,
o —BRETEFHHES, BIAINFAEIT #REK RSIELE.

Exercises

21-1. A recent trend is the increased use of predictive analytics in healthcare. For
example, suppose a healthcare provider develops an Al system that analyzes
patients' electronic health records and provides recommendations for lifestyle
changes or preventive measures. For this, the provider requires patients to
monitor and share their health data (such as pulse and blood pressure) daily. Is

this an example of data-centric Al?

21-2. Suppose we train a ResNet-34 convolutional neural network to classify
images in the CIFAR-10 and ImageNet datasets. To reduce overfitting and improve
classification accuracy, we experiment with data augmentation techniques such

as image rotation and cropping. Is this approach data centric?

References

* An example of how adding more training data can benefit model performance
more than an increase in model size: Yuval Kirstain et al., "A Few More
Examples May Be Worth Billions of Parameters"? (2021),
https://arxiv.org/abs/2110.04374.

* Cleanlab is an open source library that includes methods for improving
labeling errors and data quality in computer vision and natural language

processing contexts: https://github.com/cleanlab/cleanlab.
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Chapter 22: Speeding Up Inference

What are techniques to speed up model inference through optimization without

changing the model architecture or sacrificing accuracy?

In machine learning and Al, model inference refers to making predictions or
generating outputs using a trained model. The main general techniques for
improving model performance during inference include parallelization,
vectorization, loop tiling, operator fusion, and quantization, which are discussed

in detail in the following sections.

Tips:

o MIREMEIRRE, BZME, 81 #7tt . @8t . BF
B’ BFEE . 2t F
o XEFE, BEREETRIFMITIC.

Parallelization

One common way to achieve better parallelization during inference is to run the
model on a batch of samples rather than on a single sample at a time. This is
sometimes also referred to as batched inference and assumes that we are
receiving multiple input samples or user inputs simultaneously or within a short

time window, as illustrated in Figure 22.1.

Tips: H1TL, N HEwE , ENREREEOAN, FREISTHEA
BASRAFPBA, REFNLE,
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Sequential inference
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=

Figure 22.1

Figure 22.1 shows sequential inference processing one item at a time, which
creates a bottleneck if there are several samples waiting to be classified. In

batched inference, the model processes all four samples at the same time.

Vectorization

Vectorization refers to performing operations on entire data structures, such as
arrays (tensors) or matrices, in a single step rather than using iterative constructs
like for loops. Using vectorization, multiple operations from the loop are
performed simultaneously using single instruction, multiple data (SIMD)

processing, which is available on most modern CPUs.

Tips: MEft, TN sEezmE , HIN CcPU L, AMUERLEST
iR

This approach takes advantage of the low-level optimizations in many computing
systems and often results in significant speedups. For example, it might rely on
BLAS.

BLAS (which is short for Basic Linear Algebra Subprograms) is a specification that
prescribes a set of low-level routines for performing common linear algebra
operations such as vector addition, scalar multiplication, dot products, matrix
multiplication, and others. Many array and deep learning libraries like NumPy and

PyTorch use BLAS under the hood.
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To illustrate vectorization with an example, suppose we wanted to compute the
dot product between two vectors. The non-vectorized way of doing this would be
tousea for loop, iterating over each element of the array one by one. However,
this can be quite slow, especially for large arrays. With vectorization, you can
perform the dot product operation on the entire array at once, as shown in Figure

22.2.

Classic  x
for loop W

[1.2, 2.2, 3.3, 4.4]
[5.5, 6.6, 7.7, 8.8]
output = 0.

for x_j, w j in zip(x, w):
output += x_j * w_j

print (output)
85.25

Vectorized import torch

implementation
X

W

torch.tensor([1.2, 2.2, 3.3, 4.4])
torch.tensor([5.5, 6.6, 7.7, 8.8])

X.dot(w)

tensor (85.2500)
Figure 22.2

In the context of linear algebra or deep learning frameworks like TensorFlow and
PyTorch, vectorization is typically done automatically. This is because these
frameworks are designed to work with multidimensional arrays (also known as
tensors), and their operations are inherently vectorized. This means that when
you perform functions using these frameworks, you automatically leverage the

power of vectorization, resulting in faster and more efficient computations.

Loop Tiling

Loop tiling (also often referred to as loop nest optimization) is an advanced
optimization technique to enhance data locality by breaking down a loop's
iteration space into smaller chunks or "tiles."? This ensures that once data is
loaded into cache, all possible computations are performed on it before the cache

is cleared.

Tips: {BHA DR, LI N ERBREMRE , BEFELZE D RIR,
REUBEMHRIEIETFE, FIBFENITEREEFPTHR, REEFHRIER.
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Figure 22.3 illustrates the concept of loop tiling for accessing elements in a two-
dimensional array. In a regular for loop, we iterate over columns and rows one

element at a time, whereas in loop tiling, we subdivide the array into smaller tiles.

Regular loop Loop tiling
(0 O By O O OO0 O)e o
VNN BN VAV A A
I? |}| ? ? |%| : O O5eE One 0O
O |00 oo o (I 1 O g O Y Y R
ARNENEAENR YAV VAV Y Y
Ly O/ojo/of o O O)80 O0 O
VI VYA Tile—
O o Oy O O t O oo oo o
VWovlov v YAV Y ¥V Y
O 006000 O OO0 aNd O
Intrertile loop Intertile loop

Figure 22.3

Note that in languages such as Python, we don't usually perform loop tiling,

because Python and many other high-level languages do not allow control over
cache memory like lower-level languages such as C and C++ do. These kinds of
optimizations are often handled by underlying libraries like NumPy and PyTorch

when performing operations on large arrays.

Tips: 7 Python ERRIESH, BETHITRIA DR, ARNXEESFRM
MEFAFZE, W CcHl e+ FREIES. REMUBEHERE (4
NumPy I PyTorch) 7EZMEERBYENLART BRNIE,

Operator Fusion

Operator fusion, sometimes called /loop fusion, is an optimization technique that
combines multiple loops into a single loop. This is illustrated in Figure 22.4, the

product of an array of numbers are fused into a single loop.

I Tips: HFRMS, Wi BFme , BSTEAESHBE—TEK.
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numbers = [1, 2, 3, 4, 5] numbers = [1, 2, 3, 4, 5]
# First loop to calculate the sum # Single loop to calculate both
total sum = 0 # the sum AND the product
for num in numbers: total sum = 0

total_sum += num product = 1

for num in numbers:

# Second loop to calculate the product total_sum += num
product = 1 product #= num
for num in numbers:

product #= num print("Sum:", total sum)

print("Product:", product)
print("Sum:", total sum)
print("Product:", product) Sum: 15
Product: 120
Sum: 15
Product: 120

Figure 22.4

Operator fusion canimprove the performance of a model by reducing the
overhead of loop control, decreasing memory access times by improving cache
performance, and possibly enabling further optimizations through vectorization.
You might think this behavior of vectorization would be incompatible with

loop tiling ,in which we breaka for loop into multiple loops.

Tips: EFRE, TMESERMEE, BTRMEMERINTTH, REEE
EE, FrRIEEBIRENE—SML,

However, these techniques are actually complementary, used for different
optimizations, and applicable in different situations. Operator fusion is about
reducing the total number of loop iterations and improving data locality when the
entire data fits into cache. Loop tiling is aboutimproving cache utilization

when dealing with larger multidimensional arrays that do not fit into cache.

Related to operator fusion is the concept of reparameterization, which can often
also be used to simplify multiple operations into one. Popular examples include
training a network with multibranch architectures that are reparameterized into
single-stream architectures during inference. This reparameterization approach
differs from traditional operator fusion in that it does not merge multiple
operations into a single operation. Instead, it rearranges the operations in the
network to create a more efficient architecture for inference. In the so-called
RepVGG architecture, for example, each branch during training consists of a series
of convolutions. Once training is complete, the model is reparameterized into a

single sequence of convolutions.

I Tips: ES8ML, BN BBttt , FSTRESHBE—TIRE,
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Quantization

Quantization reduces the computational and storage requirements of machine
learning models, particularly deep neural networks. This technique involves
converting the floating-point numbers (technically discrete but representing
continuous values within a specific range) for implementing weights and biases in
a trained neural network to more discrete, lower-precision representations such
as integers. Using less precision reduces the model size and makes it quicker to
execute, which can lead to significant improvements in speed and hardware

efficiency during inference.

Tips: 2, RN Sttt , FFREEFERAEE, BMREANT
BE, REHEEE,

In the realm of deep learning, it has become increasingly common to quantize
trained models down to 8-bit and 4-bit integers. These techniques are especially

prevalent in the deployment of large language models.

There are two main categories of quantization. In post-training quantization, the
model is first trained normally with full-precision weights, which are then
quantized after training. Quantization-aware training, on the other hand,
introduces the quantization step during the training process. This allows the
model to learn to compensate for the effects of quantization, which can help

maintain the model's accuracy.

Tips: 2, —DH 2 KE: RlEEL . SHRANE .

c Fill%GER, FillFTma, SREHITENL,
o SR, EIIZGIREF, SINEXDTE, ILEBEZISHHHR
AR

However, it's important to note that quantization can occasionally lead to a
reduction in model accuracy. Since this chapter focuses on techniques to speed
up model inference without sacrificing accuracy, quantization is not as good a fit

for this chapter as the previous categories.

| Tios: B, THEASHERERTRE, Eit, FEETIHCEL,
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Other techniques to improve inference speeds include knowledge distillation and
pruning, discussed in Chapter [ch06]. However, these techniques affect the model
architecture, resulting in smaller models, so they are out of scope for this

chapter's question.

Tips: EfttiR AHEIZRE AR, B85 MREM. BkSE, ZAETER
Wit B, XERBSTIWERLRN, SEREZ), AL, hAES
EifieieER.

Exercises

22-1. Chapter [ch07] covered several multi-GPU training paradigms to speed up
modeltraining.UsingmultipleGPUscan,intheory,alsospeedupmodel inference.
However, in reality, this approach is often not the most efficient or most practical

option. Why is that?

22-2. Vectorization and loop tiling are two strategies for optimizing operations that
involve accessing array elements. What would be the ideal situation in which to

use each?

References

The official BLAS website: https://www.netlib.org/blas/.

* The paper that proposed loop tiling: Michael Wolfe, "More Iteration Space
Tiling"? (1989), https://dl.acm.org/doi/abs/10.1145/76263.76337.

* RepVGG CNN architecture merging operations in inference mode: Xiaohan
Ding et al., "RepVGG: Making VGG-style ConvNets Great Again"? (2021),
https://arxiv.org/abs/2101.03697.

* A new method for quantizing the weights in large language mod- els
downto8-bitintegerrepresentations:TimDettmersetal., "LLM.int8(): 8-bit Matrix
Multiplication for Transformers at Scale"? (2022),

https://arxiv.org/abs/2208.07339.
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* A new method for quantizing the weights in LLMs farther down to 4-bit

integers: Elias Frantar et al., "GPTQ: Accurate Post-Training Quantization for
Generative Pre-trained Transformers"? (2022),

https://arxiv.org/abs/2210.17323.
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Chapter 23: Data Distribution Shifts

What are the main types of data distribution shifts we may encounter after

model deployment?

Data distribution shifts are one of the most common problems when putting
machine learning and Al models into production. In short, they refer to the
differences between the distribution of data on which a model was trained and
the distribution of data it encounters in the real world. Often, these changes can
lead to significant drops in model performance because the model's predictions

are no longer accurate.

Tips: BB D HiRIERE-HMEPERREN, &ERAIER,

1ERVE, REEIIZRASPR{ERRVERIE D fh, S 7ESERRR A& EIRVERIE
D ZBRES.
BE, XERASSH gfke BE TR, RARRNTINAEER.,

There are several types of distribution shifts, some of which are more problematic
than others. The most common are covariate shift, concept drift, label shift, and

domain shift; all discussed in more detail in the following sections.

Tips:

o MIED IR, BZMEE, HhREILNE: MWEERE. BZE
1. nERBNEREE.
o XURIZER, BEB/EEZETHFIEMAITIC,

Covariate Shift

Suppose p(:v) describes the distribution of the input data (for instance, the
features), p(y) refers to the distribution of the target variable (or class label

distribution), and p(y|x) is the distribution of the targets y given the inputs .

Covariate shift happens when the distribution of the input data, p(:z:), changes,
but the conditional distribution of the output given the input, p(y|x), remains

the same.
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Tips:

o MWEERB, BORE, BABEST p(z) RETH, BRAEEHDT
p(y|z) REFRE,

o thEI&E covariate, —fREIE 1HITE, BESFIMELER, BHL—

EEFERAR.
Training set density Density of new data
Probability \ /
density

Value in feature space (x)

Figure 23.1

For example, suppose we trained a model to predict whether an email is spam
based on specific features. Now, after we embed the email spam filter in an email
client, the email messages that customers receive have drastically different
features. For example, the email messages are much longer and are sent from
someone in a different time zone. However, if the way those features relate to an

email being spam or not doesn't change, then we have a covariate shift.

Covariate shift is a very common challenge when deploying machine learning
models. It means that the data the model receives in a live or production
environment is different from the data on which it was trained. However, because
the relationship between inputs and outputs, p(y|z), remains the same under

covariate shift, techniques are available to adjust for it.

Tips:

o MR, ERIESIRR A PSR NBIBS M, 5155 FrER
HIESFHARE.

o B2, BFHNNBEZENER p(y|z) RIEFE, ELERES
%, B0 IHAKOE. BB,

A common technique to detect covariate shift is adversarial validation, which is
covered in more detail in Chapter [ch29]. Once covariate shift is detected, a

common method to deal with it is importance weighting, which assigns different
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weights to the training example to emphasize or de-emphasize certain instances
during training. Essentially, instances that are more likely to appear in the test
distribution are given more weight, while instances that are less likely to occur are
given less weight. This approach allows the model to focus more on the instances
representative of the test data during training, making it more robust to covariate
shift.

Label Shift

Label shift, sometimes referred to as prior probability shift, occurs when the class
label distribution p(y) changes, but the class-conditional distribution p(y|z)
remains unchanged. In other words, there is a significant change in the label

distribution or target variable.

Tips:

o R, BHRE, HEDMp(y) REZL, BEHD% p(y|r) RIF
RE,

o mERE, BESEMNEE (FXRMESM) NELEX,

As an example of such a scenario, suppose we trained an email spam classifier on
a balanced training dataset with 50 percent spam and 50 percent non-spam email.

In contrast, in the real world, only 10 percent of email messages are spam.

A common way to address label shifts is to update the model using the weighted
loss function , especially when we have an idea of the new distribution of the
labels. This is essentially a form of importance weighting. By adjusting the
weights in the loss function according to the new label distribution, we are
incentivizing the model to pay more attention to certain classes that have become
more common (or less common) in the new data. This helps align the model's
predictions more closely with the current reality, improving its performance on

the new data.

| Tios: WecmBIMAR, REBBHAHK,

Concept Drift
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Concept drift refers to the change in the mapping between the input features and
the target variable. In other words, concept drift is typically associated with
changes in the conditional distribution p(y|x), such as the relationship between

the inputs o and the output y.

Tips:

o WMRER, }EE’JzE, BMASFIES BIinEEZ BN X R LETL.
o WMIAER, BESEMEDH p(y|z) WBLHEX.

Using the example of the spam email classifier from the previous section, the
features of the email messages might remain the same, but how those features
relate to whether an email is spam might change. This could be due to a new
spamming strategy that wasn't present in the training data. Concept drift can be
much harder to deal with than the other distribution shifts discussed so far since

it requires continuous monitoring and potential model retraining.

Domain Shift

The terms domain shift and concept drift are used somewhat inconsistently across
the literature and are sometimes taken to be interchangeable. In reality, the two
are related but slightly different phenomena. Concept drift refers to a change in
the function that maps from the inputs to the outputs, specifically to situations
where the relationship between features and target variables changes as more

data is collected over time.

Tips:

o JHERE, BERBSEREER.

o R, EBHR, MALBUIES p(r) MMEEED M p(y|z) BRE
.

o TR, BEMARSSHRER, BAREDH p(r,y) BN
b Al NEI i

In domain shift, the distribution of inputs, p(a:), and the conditional distribution
of outputs given inputs, p(y|x), both change. This is sometimes also called joint

distribution shift due to the joint distribution:
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p(z,y) = p(y|z) - p(z)

We can thus think of domain shift as a combination of both covariate shift and
concept drift. In addition, since we can obtain the marginal distribution p(y) by
integrating over the joint distribution p(a}, y) over the variable  (mathematically
expressed as p(y) = [ p(,y) dz), covariate drift and concept shift also imply
label shift. (However, exceptions may exist where the change in p(x)
compensates for the change in p(y|z) such that p(y) may not change.)

Conversely, label shift and concept drift usually also imply covariate shift.

To return once more to the example of email spam classification, domain shift
would mean that the features (content and structure of email) and the
relationship between the features and target both change over time. For instance,
spam email in 2023 might have different features (new types of phishing schemes,
new language, and so forth), and the definition of what constitutes spam might
have changed as well. This type of shift would be the most challenging scenario
for a spam filter trained on 2020 data, as it would have to adjust to changes in

both the input data and the target concept.

Domain shift is perhaps the most difficult type of shift to handle, but monitoring
model performance and data statistics over time can help detect domain shifts
early. Once they are detected, mitigation strategies include collecting more

labeled data from the target domain and retraining or adapting the model.

Types of Data Distribution Shifts

Original training data Covariate shift
[ ] ) <> <>
® e o <O
o o/ °

Label shift Domain shift

e © [ ]

o/ © o L ©

o< 5 0 o
%o o0 © R
Figure 23.2

As noted in the previous sections, some types of distribution shift are more

problematic than others. The least problematic among them is typically
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covariate shift . Here, the distribution of the input features, p(x), changes
between the training and testing data, but the conditional distribution of the
output given the inputs, p(y|x), remains constant. Since the underlying
relationship between the inputs and outputs remains the same, the model trained

on the training data can still apply, in principle, to the testing data and new data.

The most problematic type of distribution shift is typically joint distribution
shift , where both the input distribution p(z) and the conditional output
distribution p(y|x) change. This makes it particularly difficult for a model to
adjust, as the learned relationship from the training data may no longer hold. The
model has to cope with both new input patterns and new rules for making

predictions based on those patterns.

However, the "severity"? of a shift can vary widely depending on the real-world
context. For example, even a covariate shift can be extremely problematic if the
shift is severe or if the model cannot adapt to the new input distribution. On the
other hand, a joint distribution shift might be manageable if the shift is relatively
minor or if we have access to a sufficient amount of labeled data from the new

distribution to retrain our model.

In general, it's crucial to monitor our models' performance and be aware of
potential shifts in the data distribution so that we can take appropriate action if

necessary.

| rios: i meE, RITRIVEE BEsHEE , FREE.

Exercises

23-1. What is the big issue with importance weighting as a technique to mitigate

covariate shift?

23-2. How can we detect these types of shifts in real-world scenarios, especially

when we do not have access to labels for the new data?
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* Recommendations and pointers to advanced mitigation techniques for
avoiding domain shift: Abolfazl Farahani et al., "A Brief Review of Domain
Adaptation"? (2020), https://arxiv.org/abs/2010.03978.
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Chapter 24: Poisson and Ordinal
Regression

When is it preferable to use Poisson regression over Ordinal

regression , and vice versa?

AEETAMOIRE: AREYIFNFEEYT, FiHeTENRNKAE

=2
o

o SHMENARTIHHEEE, FA03HTREFREE.

We usually use Poisson regression when the target variable represents count
data (positive integers). As an example of count data, consider the number of
colds contracted on an airplane or the number of guests visiting a restaurant on a
given day. Besides the target variable representing counts, the data should also be
Poisson distributed, which means that the mean and variance are roughly the
same. (For large means, we can use a normal distribution to approximate a

Poisson distribution.)

HRENIEEATRIITREE (EBE) NBnXE, fld, ZETE
BRENABIERETHNEABE. RTRRTENEFRESI, BIEEM
RMEH DT, REREIENAEABEER, (MFAIIME, HAIRTLAE
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Ordinal datais a subcategory of categorical data where the categories have a
natural order, such as 1 <2 < 3, as illustrated in Figure 24.1. Ordinal data is often
represented as positive integers and may look similar to count
data.Forexample,considerthestarratingonAmazon(1star,2stars,3stars, and so on).
However, ordinal regression does not make any assumptions about the distance
between the ordered categories. Consider the following measure of disease
severity: severe > moderate > mild > none. While we would typically map the
disease severity variable to an integer representation (4 > 3 > 2 > 1), there is no
assumption that the distance between 4 and 3 (severe and moderate) is the same

as the distance between 2 and 1 (mild and none).
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Figure 24.1

3

In short, we use Poisson regression for count data. We use Ordinal regression
when we know that certain outcomes are "higher" or "lower" than others, but we

are not sure how much or if it even matters.

Exercises

24-1. Suppose we want to predict the number of goals a soccer player will score in
a particular season. Should we solve this problem using ordinal regression or

Poisson regression?

24-2. Suppose we ask someone to sort the last three movies they have watched
based on their order of preference. Ignoring the fact that this dataset is a tad too
small for machine learning, which approach would be best suited for this kind of

data?
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Chapter 25: Confidence Intervals

What are the different ways to construct confidence intervals for machine

learning classifiers?

There are several ways to construct confidence intervals for machine
learning models, depending on the model type and the nature of your data. For
instance, some methods are computationally expensive when working with deep
neural networks and are thus more suitable to less resource-intensive machine

learning models. Others require larger datasets to be reliable.

The following are the most common methods for constructing confidence

intervals:
* Constructing normal approximation intervals based on a test set
* Bootstrapping training sets
* Bootstrapping the test set predictions
* Confidence intervals from retraining models with different random seeds

Before reviewing these in greater depth, let's briefly review the definition and

interpretation of confidence intervals.

Defining Confidence Intervals

A confidence interval is a type of method to estimate an unknown
population parameter. A population parameter is a specific measure of a
statistical population, for example, a mean (average) value or proportion. By
"specific"? measure, | mean there is a single, exact value for that parameter for
the entire population. Even though this value may not be known and often needs
to be estimated from a sample, it is a fixed and definite characteristic of the
population. A statistical population, in turn, is the complete set of items or

individuals we study.
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In a machine learning context, the population could be considered the entire
possible set of instances or data points that the model may encounter, and the

parameter we are often most interested in is the true generalization accuracy of

our model on this population.

The accuracy we measure on the test set estimates the true generalization
accuracy. However, it's subject to random error due to the specific sample of test
instances we happened to use. This is where the concept of a confidence interval
comes in. A 95 percent confidence interval for the generalization accuracy gives us
a range in which we can be reasonably sure that the true generalization accuracy

lies.

For instance, if we take 100 different data samples and compute a 95 percent
confidence interval for each sample, approximately 95 of the 100 confidence

intervals will contain the true population value (such as the generalization

accuracy), as illustrated in Figure 25.1.

A single 95 percent
confidence interval 95 percent of the 95 percent

Valuve of the unknown computed from a confidence intervals cover 5 percent of the 95 percent
population parameter sample the population parameter confidence intervals do not
to be estimated / cover the population parameter

Parameter value range
—

Different samples

Figure 25.1

More concretely, if we were to draw 100 different representative test sets from the
population (for instance, the entire possible set of instances that the model may
encounter) and compute the 95 percent confidence interval for the generalization
accuracy from each test set, we would expect about 95 of these intervals to

contain the true generalization accuracy.
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We can display confidence intervals in several ways. It is common to use a bar
plot representation where the top of the bar represents the parameter value (for
example, model accuracy) and the whiskers denote the upper andlower levels of
the confidence interval (left chart of Figure 25.2 ). Alternatively, the confidence

intervals can be shown without bars, as in the right chart of Figure 25.2.
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Figure 25.2

This visualization is functionally useful in a number of ways. For instance, when
confidence intervals for two model performances do not overlap, it's a strong
visual indicator that the performances are significantly different. Take the example
of statistical significance tests, such as t-tests: if two 95 percent confidence

intervals do not overlap, it strongly suggests that the difference between the two

measurements is statistically significant at the 0.05 level.
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E7,

On the other hand, if two 95 percent confidence intervals overlap, we cannot
automatically conclude that there's no significant difference between the two
measurements. Even when confidence intervals overlap, there can still be a

statistically significant difference.
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Alternatively, to provide more detailed information about the exact quantities, we
can use a table view to express the confidence intervals. The two common

notations are summarized in Table 1.1.

Confidence Intervals

REES BEXE RTE) BEfEXE (TRR, LFR)

1 89.1% +1.7% 89.1% (87.4%, 90.8%)
2 79.5% = 2.2% 79.5% (77.3%, 81.7%)
3 95.2% + 1.6% 95.2% (93.6%, 96.8%)

The == notation is often preferred if the confidence interval is symmetric, meaning
the upper and lower endpoints are equidistant from the estimated parameter.

Alternatively, the lower and upper confidence intervals can be written explicitly.

| +@semTFRRBEERE, ARREERRESNHRIERT

The Methods

The following sections describe the four most common methods of constructing

confidence intervals.

Method 1: Normal Approximation Intervals

The normal approximation interval involves generating the confidence interval
from a single train-test split. It is often considered the simplest and most
traditional method for computing confidence intervals. This approach is especially
appealing in the realm of deep learning, where training models is computationally
costly. It's also desirable when we are interested in evaluating a specific model,

instead of models trained on various data partitions like in k-fold cross-validation.

How does it work? In short, the formula for calculating the confidence interval for

a predicted parameter (for example, the sample mean, denoted as Z), assuming a
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normal distribution, is expressed as & & z x SE.

In this formula, z represents the z-score, which indicates a particular value's
number of standard deviations from the mean in a standard normal distribution.
SE represents the standard error of the predicted parameter (in this case, the

sample mean).

Most readers will be familiar with z-score tables that are usually found in the

back of introductory statistics textbooks. However, a more convenient and

preferred way to obtain z-scores is to use functions like SciPy's
stats.zscore function, which computes the z-scores for given confidence

levels.

For our scenario, the sample mean, denoted as &, corresponds to the test set
accuracy, ACCltest, a measure of successful predictions in the context of a

binomial proportion confidence interval.

The standard error can be calculated under a normal approximation as follows:

SE — \/ L1 ACCuu (1 - ACCi)
n

In this equation, 1 signifies the size of the test set. Substituting the standard error

back into the previous formula, we obtain the following:

1
ACCtest :l: z\/ﬁ ACCtest (]. - ACCtest)

Additional code examples to implement this method can also be found in the
supplementary/q25_confidence-intervals subfolder in the supplementary code

repository at https://github.com/rasbt/MachineLearning-QandAl-book. While the

normal approximation interval method is very popular due to its simplicity, it has
some downsides. First, the normal approximation may not always be accurate,
especially for small sample sizes or for data that is not normally distributed. In
such cases, other methods of computing confidence intervals may be more
accurate. Second, using a single train-test split does not provide information
about the variability of the model performance across different splits of the data.
This can be an issue if the performance is highly dependent on the specific split
used, which may be the case if the dataset is small or if there is a high degree of

variability in the data.

2196 71, 3239 171

M


https://github.com/rasbt/MachineLearning-QandAI-book
https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEEFFAR30YE (JHERR& R CHEE) | https:/ningg top/Machine-Learning-Q-and-Al/

Method 2: Bootstrapping Training Sets

Confidence intervals serve as a tool for approximating unknown parameters.
However, when we are restricted to just one estimate, such as the accuracy
derived from a single test set, we must make certain assumptions to make this
work. For example, when we used the normal approximation interval described in
the previous section, we assumed normally distributed data, which may or may

not hold.

In a perfect scenario, we would have more insight into our test set sample
distribution. However, this would require access to many independent test
datasets, which is typically not feasible. A workaround is the bootstrap method,

which resamples existing data to estimate the sampling distribution.

In practice, when the test set is large enough, the normal distribution
approximation will hold, thanks to the central limit theorem. This theorem states
that the sum (or average) of a large number of independent, identically
distributed random variables will approach a normal distribution, regardless of
the underlying distribution of the individual variables. It is difficult to specify what
constitutes a large-enough test set. However, under stronger assumptions than
those of the central limit theorem, we can at least estimate the rate of
convergence to the normal distribution using the Berry""Esseen theorem, which
gives a more quantitative estimate of how quickly the convergence in the central

limit theorem occurs.

In a machine learning context, we can take the original dataset and draw a
random sample with replacement. If the dataset has size . and we draw a
random sample with replacement of size n, this implies that some data points will
likely be duplicated in this new sample, whereas other data points are not
sampled at all.We can then repeat this procedure for multiple rounds to obtain
multiple training and test sets. This process is known as out-of-bag bootstrapping,

illustrated in Figure 25.4.
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Figure 25.4

Suppose we constructed k training and test sets. We can now take each of these

splits to train and evaluate the model to obtain k test set accuracy estimates.

Considering this distribution of test set accuracy estimates, we can take the range

between the 2.5th and 97.5th percentile to obtain the 95 percent confidence

interval, as illustrated in Figure 25.5.
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Unlike the normal approximation interval method, we can consider this out-of-bag

bootstrap approach to be more agnostic to the specific distribution. Ideally, if the

0.4 1

95 percent confidence inferval

< ———>

percentile
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Test set accuracy

Mean (average)

Figure 25.5

assumptions for the normal approximation are satisfied, both methodologies

would yield identical outcomes.

#5198 71, 3239

b=

M


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20:26 | RIEEFFAR30YE (JHERR& R CHEE) | https:/ningg top/Machine-Learning-Q-and-Al/

Since bootstrapping relies on resampling the existing test data, its downside is
that it doesn't bring in any new information that could be available in a broader
population or unseen data. Therefore, it may not always be able to generalize the

performance of the model to new, unseen data.

Note that we are using the bootstrap sampling approach in this chapter instead of
obtaining the train-test splits via k-fold cross-validation, because of the
bootstrap's theoretical grounding via the central limit theorem discussed earlier.
There are also more advanced out-of-bag bootstrap methods, such as the .632

and .632+ estimates, which are reweighting the accuracy estimates.

Method 3: Bootstrapping Test Set Predictions

An alternative approach to bootstrapping training sets is to bootstrap test sets.The
idea is to train the model on the existing training set as usual and then to evaluate
the model on bootstrapped test sets, as illustrated in Figure 25.6. After obtaining
the test set performance estimates, we can then apply the percentile method

described in the previous section.

Original training set Original test set
B B B A A B ) B Y
(1) Train model l (2) Bootstrap test sets

RN N
D —— [xl v ]

(3) Evaluate model \
on test sets

Figure 25.6

Contrary to the prior bootstrap technique, this method uses a trained model and
simply resamples the test set (instead of the training sets). This approach is
especially appealing for evaluating deep neural networks, as it doesn't require
retraining the model on the new data splits. However, a disadvantage of this
approach is that it doesn't assess the model's variability toward small changes in

the training data.
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Method 4: Retraining Models with Different
Random Seeds

In deep learning, models are commonly retrained using various random seeds
since some random weight initializations may lead to much better models than
others. How can we build a confidence interval from these experiments? If we
assume that the sample means follow a normal distribution, we can employ a
previously discussed method where we calculate the confidence interval around a

sample mean, denoted as &, as follows:
T+ z-SE

Since in this context we often work with a relatively modest number of samples
(for instance, models from 5 to 10 random seeds), assuming a ¢ distribution is
deemed more suitable than a normal distribution. Therefore, we substitute the 2
value with a ¢ value in the preceding formula. (As the sample size increases, the £
distribution tends to look more like the standard normal distribution, and the

critical values [z and t] become increasingly similar.)

Furthermore, if we are interested in the average accuracy, denoted as ACCgt,
we consider ACCtest,j corresponding to a unique random seed j as a sample.
The number of random seeds we evaluate would then constitute the sample size

n. As such, we would calculate:

ACCyest £t - SE

Here, SE is the standard error, calculated as SE = SD /4/n, while
1 T
ACCrest = ~ 2 ACClest,j
J:

is the average accuracy, which we compute over the r random seeds. The

standard deviation SD is calculated as follows:

SD — \/Z;1 (ACCtest,j - ACCtest)2
- r—1

To summarize, calculating the confidence intervals using various random seeds is
another effective alternative. However, it is primarily beneficial for deep learning

models. It proves to be costlier than both the normal approximation approach
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(method 1) and bootstrapping the test set (method 3), as it necessitates retraining
the model. On the bright side, the outcomes derived from disparate random seeds

provide us with a robust understanding of the model's stability.

Recommendations

Each possible method for constructing confidence intervals has its unique
advantages and disadvantages. The normal approximation interval is cheap to
compute but relies on the normality assumption about the distribution. The out-
of-bag bootstrap is agnostic to these assumptions but is substantially more
expensive to compute. A cheaper alternative is bootstrapping the test only, but
this involves bootstrapping a smaller dataset and may be misleading for small or
nonrepresentative test set sizes. Lastly, constructing confidence intervals from
different random seeds is expensive but can give us additional insights into the

model's stability.

Exercises

25-1. As mentioned earlier, the most common choice of confidence level is 95
percent confidence intervals. However, 90 percent and 99 percent are also
common. Are 90 percent confidence intervals smaller or wider than 95 percent

confidence intervals, and why is this the case?

25-2.In ""? on page , we created test sets by bootstrapping and then applied the
already trained model to compute the test set accuracy on each of these datasets.
Can you think of a method or modification to obtain these test accuracies more

efficiently?
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Chapter 26: Confidence Intervals vs.
Conformal Predictions

{#chapter-26-confidence-intervals-vs-conformal-predictions}

What are the differences between confidence intervals and conformal

predictions, and when do we use one over the other?

Confidence intervals and conformal predictions are both statistical methods to
estimate the range of plausible values for an unknown population parameter. As
discussed in Chapter [ch25], a confidence interval quantifies the level of
confidence that a population parameter lies within an interval. For instance, a 95
percent confidence interval for the mean of a population means that if we were to
take many samples from the population and calculate the 95 percent confidence
interval for each sample, we would expect the true population mean (average) to
lie within these intervals 95 percent of the time. Chapter [ch25] covered several
techniques for applying this method to estimate the prediction performance of
machine learning models. Conformal predictions, on the other hand, are
commonly used for creating prediction intervals, which are designed to cover a

true outcome with a certain probability.

This chapter briefly explains what a prediction interval is and how it differs from
confidence intervals, and then it explains how conformal predictions are, loosely

speaking, a method for constructing prediction intervals.

Confidence Intervals and Prediction
Intervals

Whereas a confidence interval focuses on parameters that characterize a
population as a whole, a prediction interval provides a range of values for a single
predicted target value. For example, consider the problem of predicting people's
heights. Given a sample of 10,000 people from the population, we might conclude
that the mean (average) height is 5 feet, 7 inches. We might also calculate a 95
percent confidence interval for this mean, ranging from 5 feet, 6 inches to 5 feet, 8

inches.
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A prediction interval, however, is concerned with estimating not the height of the
population but the height of an individual person. For example, given a weight of
185 pounds, a given person's prediction interval may fall between 5 feet 8 inches

and 6 feet.

In a machine learning model context, we can use confidence intervals to estimate
a population parameter such as the accuracy of a model (which refers to the
performance on all possible prediction scenarios). In contrast, a prediction

interval estimates the range of output values for a single given input example.

Prediction Intervals and Conformal
Predictions

Both conformal predictions and prediction intervals are statistical techniques that
estimate uncertainty for individual model predictions, but they do so in different

ways and under different assumptions.

While prediction intervals often assume a particular data distribution and are tied
to a specific type of model, conformal prediction methods are distribution free

and can be applied to any machine learning algorithm.

In short, we can think of conformal predictions as a more flexible and
generalizable form of prediction intervals. However, conformal predictions often
require more computational resources than traditional methods for constructing

prediction intervals, which involve resampling or permutation techniques.

Prediction Regions, Intervals, and Sets

In the context of conformal prediction, the terms prediction interval, prediction
set, and prediction region are used to denote the plausible outputs for a given

instance. The type of term used depends on the nature of the task.

In regression tasks where the output is a continuous variable, a prediction interval
provides a range within which the true value is expected to fall with a certain level
of confidence. For example, a model might predict that the price of a house is
between $200,000 and $250,000.
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In classification tasks, where the output is a discrete variable (the class labels), a
prediction set includes all class labels that are considered plausible predictions
for a given instance. For example, a model might predict that an image depicts

either a cat, dog, or bird.

Prediction region is a more general term that can refer to either a prediction
interval or a prediction set. It describes the set of outputs considered plausible by

the model.

Computing Conformal Predictions

Now that we've introduced the difference between confidence intervals and
prediction regions and learned how conformal prediction methods are related to

prediction intervals, how exactly do conformal predictions work?

In short, conformal prediction methods provide a framework for creating
prediction regions, sets of potential outcomes for a prediction task. Given the
assumptions and methods used to construct them, these regions are designed to

contain the true outcome with a certain probability.

For classifiers, a prediction region for a given input is a set of labels such that the
set contains the true label with a given confidence (typically 95 percent), as

illustrated in Figure 26.1.

A new image fo classify

ImageNet
training dataset

Hawk
Duck Eagle
Goose C

at

Conformal
predictor

Hawk

True label
Eagl
Conformal

Goose
Cat

prediction set

Figure 26.1

As depicted in Figure 26.1, the ImageNet dataset consists of a subset of bird

species. Some bird species in ImageNet belong to one of the follow- ing classes:
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hawk, duck, eagle, or goose. ImageNet also contains other animals, for example,
cats. For a new image to classify (here, an eagle), the conformal prediction set
consists of classes such that the true label, eagle, is contained within this set with
95 percent probability. Often, this includes closely related classes, such as hawk
and goose in this case. However, the prediction set can also include less closely

related class labels, such as cat.

To sketch the concept of computing prediction regions step by step, let's suppose
we train a machine learning classifier for images. Before the modelis trained, the
dataset is typically split into three parts: a training set, a calibration set, and a test
set. We use the training set to train the model and the calibration set to obtain the
parameters for the conformal prediction regions. We can then use the test set to
assess the performance of the conformal predictor. A typical split ratio might be

60 percent training data, 20 percent calibration data, and 20 percent test data.

The first step after training the model on the training set is to define a
nonconformity measure, a function that assigns a numeric score to each instance
in the calibration set based on how "unusual"? it is. This could be based on the
distance to the classifier's decision boundary or, more commonly, 1 minus the
predicted probability of a class label. The higher the score is, the more unusual

the instance is.

Before using conformal predictions for new data points, we use the nonconformity
scores from the calibration set to compute a quantile threshold. This threshold is
a probability level such that, for example, 95 percent of the instances in the
calibration set (if we choose a 95 percent confidence level) have nonconformity
scores below this threshold. This threshold is then used to determine the
prediction regions for new instances, ensuring that the predictions are calibrated

to the desired confidence level.

Once we have the threshold value, we can compute prediction regions for new
data. Here, for each possible class label (each possible output of your classifier)
for a given instance, we check whether its nonconformity score is below the

threshold. If it is, then we include it in the prediction set for that instance.

A Conformal Prediction Example
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Let's illustrate this process of making conformal predictions with an example
using a simple conformal prediction method known as the score method.
Suppose we train a classifier on a training set to distinguish between three
species of birds: sparrows, robins, and hawks. Suppose the predicted probabilities

for a calibration dataset are as follows:

® Sparrow [0.95, 0.9, 0.85, 0.8, 0.75]
e Robin [0.7, 0.65, 0.6, 0.55, 0.5]
e Hawk [0.4, 0.35, 0.3, 0.25, 0.2]

As depicted here, we have a calibration set consisting of 15 examples, five for each
of the three classes. Note that a classifier returns three probability scores for each
training example: one probability corresponding to each of the three classes
(Sparrow, Robin, and Hawk). Here, however, we've selected only the probability
for the true class label. For example, we may obtain the values [0.95, 0.02, 0.03]
for the first calibration example with the true label Sparrow. In this case, we kept
only 0.95.

Next, after we obtain the previous probability scores, we can compute the

nonconformity score as 1 minus the probability, as follows:

e Sparrow [0.05, 0.1, 0.15, 0.2, 0.25]
e Robin [0.3, 0.35, 0.4, 0.45, 0.5]
e Hawk [0.6, 0.65, 0.7, 0.75, 0.8]

Considering a confidence level of 0.95, we now select a threshold such that 95
percent of these nonconformity scores fall below that threshold. Based on the
nonconformity scores in this example, this threshold is 0.8. We can then use this

threshold to construct the prediction sets for new instances we want to classify.

Now suppose we have a new instance (a new image of a bird) that we want to
classify. We calculate the nonconformity score of this new bird image, assuming it

belongs to each bird species (class label) in the training set:

e Sparrow 0.26
® Robin 0.45
e Hawk 0.9

In this case, the Sparrow and Robin nonconformity scores fall below the threshold

of 0.8. Thus, the prediction set for this input is [Sparrow, Robin]. In other words,
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this tells us that, on average, the true class label is included in the prediction set

95 percent of the time.

A hands-on code example implementing the score method can be found in the

supplementary/q26_conformal-prediction subfolder at

https://github.com/rasbt/MachineLearning-QandAl-book.

The Benefits of Conformal Predictions

In contrast to using class-membership probabilities returned from classifiers, the
major benefits of conformal prediction are its theoretical guarantees and its
generality. Conformal prediction methods don't make any strong assumptions
about the distribution of the data or the model being used, and they can be
applied in conjunction with any existing machine learning algorithm to provide

confidence measures for predictions.

Confidence intervals have asymptotic coverage guarantees, which means that the
coverage guarantee holds in the limit as the sample (test set) size goes to infinity.
This doesn't necessarily mean that confidence intervals work for only very large
sample sizes, but rather that their properties are more firmly guaranteed as the
sample size increases. Confidence intervals therefore rely on asymptotic
properties, meaning that their guarantees become more robust as the sample size

grows.

In contrast, conformal predictions provide finite-sample guarantees, ensuring that
the coverage probability is achieved for any sample size. For example, if we
specify a 95 percent confidence level for a conformal prediction method and
generate 100 calibration sets with corresponding prediction sets, the method will
include the true class label for 95 out of the 100 test points. This holds regardless

of the size of the calibration sets.

While conformal prediction has many advantages, it does not always provide the
tightest possible prediction intervals. Sometimes, if the underlying assumptions of
a specific classifier hold, that classifier's own probability estimates might offer

tighter and more informative intervals.

Recommendations
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A confidence interval tells us about our level of uncertainty about the model's
properties, such as the prediction accuracy of a classifier. A prediction interval or
conformal prediction output tells us about the level of uncertainty in a specific
prediction from the model. Both are very important in understanding the
reliability and performance of our model, but they provide different types of

information.

For example, a confidence interval for the prediction accuracy of a model can be
helpful for comparing and evaluating models and for deciding which model to
deploy. On the other hand, a prediction interval can be helpful for using a model
in practice and understanding its predictions. For instance, it can help identify
cases where the model is unsure and may need additional data, human oversight,

or a different approach.

Exercises

26-1. Prediction set sizes can vary between instances. For example, we may
encounter a prediction set size of 1 for a given instance and for another, a set size

of 3. What does the prediction set size tell us?

26-2. Chapters [ch25] and [ch26] focused on classification methods. Could we use

conformal prediction and confidence intervals for regression too?

References

* MAPIE is a popular library for conformal predictions in Python:

https://mapie.readthedocs.io/.

* For more on the score method used in this chapter: Christoph Molnar,
Introduction to Conformal Prediction with Python (2023),

https://christophmolnar.com/books/conformal-prediction/.

* |n addition to the score method, several other variants of confor- mal
prediction methods exist. For a comprehensive collection of conformal
prediction literature and resources, see the Awesome Conformal Prediction

page: https://github.com/valeman/awesome-conformal-prediction.
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Chapter 27: Proper Metrics

What are the three properties of a distance function that make it a proper

metric?

Metrics are foundational to mathematics, computer science, and various other
scientific domains. Understanding the fundamental properties that define a good
distance function to measure distances or differences between points or datasets
is important. For instance, when dealing with functions like loss functions in
neural networks, understanding whether they behave like proper metrics can be

instrumental in knowing how optimization algorithms will converge to a solution.

Tips:

* Metrics BE, & #% . HENNZE NESMEMBZIHAOEM,

- BREXREFN BEREy NXEEE, NTNERBEIESEZERER
REFREXREE,

o BlaN, EAEMEZMERRMKREET, TRENEERILRIFNEE

BRHES, ITTRAAEIZNATKREEIBREREXEE,
EEEH , BER=1XEEM: Fax . dng M =ZAaFEk .

This chapter analyzes two commonly utilized loss functions, the mean squared
error andthe cross-entropy loss ,to demonstrate whether they meet the

criteria for proper metrics.

Tips: A8, W TR ITEBNRKRE, HrRze M IEHREK , KB
TEMNRENERFNEEE,

The Criteria

To illustrate the criteria of a proper metric, consider two vectors or points v and

w, and their distance d(v, W), as shown in Figure 27.1.
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Figure 27.1

The criteria of a proper metric are the following:

* The distance between two points is always non-negative, d(v, W) >0, and

can be 0 only if the two points are identical, that is, v. = w.
* The distance is symmetric; for instance, d(v, w) = d(w, v).

* The distance function satisfies the triangle inequality for any three points: v,

W, X, meaning:

d(v,w) < d(v,x) + d(x,w)
| vies:EmEm, BES k@B o . wEE A SRTER

To better understand the triangle inequality, think of the points as vertices of a
triangle. If we consider any triangle, the sum of two of the sides is always larger
than the third side, as illustrated in Figure 27.2.

X
C
A+B>C A
A+C>B
B+C>A
Vi W
B
Figure 27.2

Consider what would happen if the triangle in equality depicted in Figure 27.2
weren't true. If the sum of the lengths of sides AB and BC was shorter than AC,

then sides AB and BC would not meet to form a triangle; instead, they would fall
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short of each other. Thus, the fact that they meet and form a triangle

demonstrates the triangle inequality.

The Mean Squared Error

The mean squared error (MSE) loss computes the squared Euclidean

distance between a target variable y and a predicted target value ¥:

n

MSE = % > (v - 37(“)2

1=1

The index 2 denotes the ¢th data point in the dataset or sample. Is this loss

function a proper metric?

For simplicity's sake, we will consider the squared error (SE) loss between
two data points (though the following insights also hold for the MSE). As shown in
the following equation, the SE loss quantifies the squared difference between the
predicted and actual values for a single data point, while the MSE loss averages

these squared differences over all data points in a dataset:

In this case, the SE satisfies the first part of the first criterion: the distance
between two points is always non-negative . Since we are raising the difference

to the power of 2, it cannot be negative.

How about the second criterion, that the distance can be 0 only if the two points
are identical? Due to the subtraction in the SE, it is intuitive to see that it can be 0
only if the prediction matches the target variable, y = 7). As with the first

criterion, we can use the square to confirm that SE satisfies the second criterion:

we have (y — §)° = (§ — y)”.

At first glance, it seems that the squared error loss also satisfies the third

criterion, the triangle inequality . Intuitively, you can check this by choosing

three arbitrary numbers, here 1, 2, 3:
e (1-2)2<(1-3)2+(2-3)2

e (1-3)2<(1-2)2+(2-3)?
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(232 < (1-2)2+(1-3)

However, there are values for which this is not true. For example, consider the
valuesa = 0,b = 2,and ¢ = 1. This gives us d(a, b) = 4,d(a,c) = 1, and
d(b, c) = 1, such that we have the following scenario, which violates the triangle

inequality:

e (0—2)2 £ (0—1)%+(2—1)
« (2-1)2<(0-1)2+(0-2)?
e (0—1)2<(0—2)2+(1—2)2

Since it does not satisfy the triangle inequality via the example above, we

conclude that the (mean) squared error loss is not a proper metric.

However, if we change the squared error into the root-squared error

the triangle inequality can be satisfied:

V=27 < V- 17 + VE- 17

You might be familiar with the L2 distance or Euclidean distance, which is
known to satisfy the triangle inequality. These two distance metrics are equivalent

to the root-squared error when considering two scalar values.

Tips:

o RN THiEE BN TARIRE , W=AFREXTLUHE.
o EHIRIRE, BEHRENFELR,

The Cross-Entropy Loss

Tips: XK, SEHERTHED 2 EERRKEE.

FIXME 7?? A~ IR fiR
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Cross entropy is used to measure the distance between two probability
distributions. In machine learning contexts, we use the discrete cross-entropy loss
(CE) between class label ¢ and the predicted probability p when we train logistic
regression or neural network classifiers on a dataset consisting of 1 training

examples:
1 i i
CE(y,p) = —~ > " x log (p( ))
i=1

Is this loss function a proper metric? Again, for simplicity's sake, we will look at

the cross-entropy function (H) between only two data points:

H(y,p) = —y x log(p)

The cross-entropy loss satisfies one part of the first criterion: the distance is
always non-negative because the probability score is a number in the range [0, 1].
Hence, log(p) ranges between —o0 and 0. The important part is that the H
function includes a negative sign. Hence, the cross entropy ranges between 0 and

+00 and thus satisfies one aspect of the first criterion shown above.

However, the cross-entropy loss is not 0 for two identical points. For example,

H(0.9,0.9) = —0.9 x log(0.9) = 0.095.

The second criterion shown above is also violated by the cross-entropy loss
because the loss is not symmetric: —y X log(p) # —p X log(y). Let's

illustrate this with a concrete, numeric example:
e Ify =1andp = 0.5, then —1 x log(0.5) = 0.693.
e Ify =0.5andp = 1, then —0.5 x log(1) = 0.

Finally, the cross-entropy loss does not satisfy the triangle inequality,
H(r,p) > H(r,q) + H(g,p). Let's illustrate this with an example as well.
Suppose we choose 7 = 0.9, p = 0.5, and ¢ = 0.4. We have:

. H(0.9,0.5) = 0.624
. H(0.9,0.4) = 0.825
« H(0.4,0.5) = 0.277

As you can see, 0.624 > 0.825 + 0.277 does not hold here.
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In conclusion, while the cross-entropy loss is a useful loss function for

training neural networks via (stochastic) gradient descent, it is not a proper

distance metric, as it does not satisfy any of the three criteria.

Tips:

o RXJFMK, BLEIELTNHZMEDLRN, BTFEHEMTHRER
DI Z EEEAIREE, XMMARRBAEINGIRET, PIU5|SRE
FIRE RS,

c BR, XXMEHK, T"ERTFNEENE, RAENHE=BFF,

Exercises

27-1. Suppose we consider using the mean absolute error (MAE) as an alternative
to the root mean square error (RMSE) for measuring the performance of a

machine learning model, where

1 . .
MAE = =) " |y — 50
niﬂly I

and

n

1 . .
RMSE = 4| = E (#) — g(0)2

i=1

However, a colleague argues that the MAE is not a proper distance metric in
metric space because it involves an absolute value, so we should use the RMSE

instead. Is this argument correct?

27-2. Based on your answer to the previous question, would you say that the MAE

is better or is worse than the RMSE?
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Chapter 28: The k in k-Fold Cross-
Validation

k-fold cross-validation is a common choice for evaluating machine learning
classifiers because it lets us use all training data to simulate how well a
machine learning algorithm might perform on new data. What are the

advantages and disadvantages of choosing a large k?

BEITIET kfold RRIGIE, HiHETEMNMRIRS,

* kfold RRIER—HMERINTENFE I D RBNGE, EILHIUE
FERRINZREURERAZ AN 232 =) BIEE R EUE LRIRIL,

o RFBAM KB, EGRZENERE), EIREZENERBR

0,

o EFRBUWIKER, IIFRZENERBA, EHEEZENEFHBR
j(o

We can think of k-fold cross-validation as a workaround for model evaluation
when we have limited data. In machine learning model evaluation, we care about
the generalization performance of our model, that is, how well it performs on new
data. In k-fold cross-validation, we use the training data for model selection and
evaluation by partitioning it into k validation rounds and folds. If we have k folds,

we have kiterations, leading to k different models, as illustrated in Figure 28.1.

‘ Training dataset ‘ (2) Evaluate model

(1) Train five models l performance

[ [ [ | —> | Performance 1

Validation fold | . | I |—+ | Performance 2
Training fold —T l || | | —> | Performance 3

\ [ | Bl | |Perfformance 4

\ | | | B | Performance 5

Average performance
(3) Train model on whole training dataset eep

‘ Training dataset |

|

Final model

Figure 28.1
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Using k-fold cross-validation, we usually evaluate the performance of a particular
hyperparameter configuration by computing the average performance over the k
models. This performance reflects or approximates the performance of a model

trained on the complete training dataset after evaluation.

{ER k-fold XRIIE, HBATBEBIITE A MREITIYMEEE, KiTEEE
BSEENITEE.

The following sections cover the trade-offs of selecting values for kin k-fold cross-
validation and address the challenges of large k values and their computational
demands, especially in deep learning contexts. We then discuss the core purposes

of kand how to choose an appropriate value based on specific modeling needs.

Trade-offs in Selecting Values for k

If kis too large, the training sets are too similar between the different rounds of
cross-validation. The k models are thus very similar to the model we obtain by
training on the whole training set. In this case, we can still leverage the advantage
of k-fold cross-validation: evaluating the performance for the entire training set
via the held-out validation fold in each round. (Here, we obtain the training set by
concatenating all & -- 1 training folds in a given iteration.) However, a
disadvantage of a large kis that it is more challenging to analyze how the
machine learning algorithm with the particular choice of hyperparameter setting

behaves on different training datasets.

Besides the issue of too-similar datasets, running k-fold cross-validation with a
large value of kis also computationally more demanding. A larger kis more
expensive since it increases both the number of iterations and the training set size
at each iteration. This is especially problematic if we work with relatively large

models that are expensive to train, such as contemporary deep neural networks.

A common choice for kis typically 5 or 10, for practical and historical reasons. A
study by Ron Kohavi (see Refrence at the end of this chapter) found that k=10
offers a good bias and variance trade-off for classical machine learning
algorithms, such as decision trees and naive Bayes classifiers, on a handful of

small datasets.
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55} 10 & k-fold R IEIEAVE WikEE, XRHTFEFRFBERERE., Ron
Kohavi AR (MAERENSEGH) &M, k=10 E/NEBUEE 3%
BN BFIEE (MARNMAIZENHETSX2R) RETRIFNHEENSE
W,

For example, in 10-fold cross-validation, we use 9/10 (90 percent) of the data for
training in each round, whereas in 5-fold cross-validation, we use only 4/5 (80

percent) of the data, as shown in Figure 28.2.

10-fold cross-validation

5-+fold cross-validation E-‘ : : : : } } ::
R N i i i e R
— I —— N N R E N B B B
S — N N N N R R -
CT T T T ® T T T
C— T T  wmmm ) [ T T 1 B T 1
_|||||||-||
e IR
C T 1rrrrrr 1 'mm

Figure 28.2

However, this does not mean large training sets are bad, since they can reduce the
pessimistic bias of the performance estimate (mostly a good thing) if we assume
that the model training can benefit from more training data. (See Figure 5.1 on

page for an example of a learning curve.)

In practice, both a very small and a very large kK may increase variance. For
instance, a larger k makes the training folds more similar to each other since a
smaller proportion is left for the held-out validation sets. Since the training folds
are more similar, the models in each round will be more similar. In practice, we
may observe that the variance of the held-out validation fold scores is more
similar for larger values of k. On the other hand, when kis large, the validation
sets are small, so they may contain more random noise or be more susceptible to
quirks of the data, leading to more variation in the validation scores across the
different folds. Even though the models themselves are more similar (since the
training sets are more similar), the validation scores may be more sensitive to the
particularities of the small validation sets, leading to higher variance in the overall

cross-validation score.

| kExan, sammss,
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Determining Appropriate Values for k

When deciding upon an appropriate value of k, we are often guided by
computational performance and conventions. However, it's worthwhile to define
the purpose and context of using k-fold cross-validation. For example, if we care
primarily about approximating the predictive performance of the final model,
using a large k makes sense. This way, the training folds are very similar to the
combined training dataset, yet we still get to evaluate the model on all data

points via the validation folds.

REE LK k EE, %EEMEM k-fold XRGIERBRIF LT, Fig0,
REMNEZXR I MURLREFUUMEEE, ERRAN K ZREXHN., X
#, IERIFEEEUTESINEEIESR, ERMNDATNETILIESIHEE
ggo

On the other hand, if we care to evaluate how sensitive a given hyperparameter
configuration and training pipeline is to different training datasets, then choosing

a smaller number for K makes more sense.

MRBMNEZXROAEESE BEMINFEEN T EIIGEBIESROSRE, B
LIEFEB k BAB XA,

Since most practical scenarios consist of two steps -- tuning hyperparameters and
evaluating the performance of a model -- we can also consider a two-step
procedure. For instance, we can use a smaller k during hyperparameter tuning.
This will help speed up the hyperparameter search and probe the hyperparameter
configurations for robustness (in addition to the average performance, we can
also consider the variance as a selection criterion). Then, after hyperparameter

tuning and selection, we can increase the value of k to evaluate the model.

ASELIrZREAEFER TSR AREBSHITEREEEE, FELt, FH(d
AMER—T AT,

o flaN, FERBSH, FATAIMERBV/ k. XEHEBIINERBSE
=, AMNESEENTRRIE (R7FYMEE, BNERTUZBELEE
FIRIFITIE) o
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However, reusing the same dataset for model selection and evaluation introduces
biases, and it is usually better to use a separate test set for model evaluation.
Also, nested cross-validation may be preferred as an alternative to 4-fold

cross-validation.

Am, ESERERMNMIESHTREEENITE, S5INREE, BERY
(ERRIRIINR SR B TRET(E, H5h, BRERXRINIEATHELE k-fold 3ZRIE
IESE ATEY,

BT BRERIXIEIE

Exercises

28-1. Suppose we want to provide a model with as much training data as possible.
We consider using leave-one-out cross-validation (LOOCV), a special case of k-fold
cross-validation where k is equal to the number of training examples, such that
the validation folds contain only a single data point. A colleague mentions that
LOOCV is defective for discontinuous loss functions and performance measures
such as classification accuracy. For instance, for a validation fold consisting of only
one example, the accuracy is always either 0 (0 percent) or 1 (99 percent). Is this

really a problem?

28-2. This chapter discussed model selection and model evaluation as two use

cases of k-fold cross-validation. Can you think of other use cases?

References

* For a longer and more detailed explanation of why and how to use k-fold
cross-validation, see my article: "Model Evaluation, Model Selection, and
Algorithm Selection in Machine Learning"? (2018),
https://arxiv.org/abs/1811.12808.

* The paper that popularized the recommendation of choosing k=5 and k= 10:
Ron Kohavi, "A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection"? (1995),
https://dl.acm.org/doi/10.5555/1643031.1643047.
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Chapter 29: Training and Test Set
Discordance

Suppose we train a model that performs much better on the test dataset than
on the training dataset. Since a similar model configuration previously worked
well on a similar dataset, we suspect something might be unusual with the
data. What are some approaches for looking into training and test set

discrepancies, and what strategies can we use to mitigate these issues?

Before investigating the datasets in more detail, we should check for technical
issues in the data loading and evaluation code. For instance, a simple sanity
check is to temporarily replace the test set with the training set and to reevaluate
the model. In this case, we should see identical training and test set performances
(since these datasets are now identical). If we notice a discrepancy, we likely have
a bug in the code; in my experience, such bugs are frequently related to incorrect

shuffling or inconsistent (often missing) data normalization.

ERA—THRERIERZA, HMMZIEEBEMBFIEEAEPAIRARR
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o
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SUAEAER) .

°W%ﬁME%ﬂEE,ﬁMWEﬂ%ﬁMg;Wﬁ?% XMEEIR, B
BEURFMEAY S FERE T — A — (BERK) .

If the test set performance is much better than the training set performance, we
can rule out overfitting. More likely, there are substantial differences in the
training and test data distributions. These distributional differences may affect
both the features and the targets. Here, plotting the target or label distributions of
training and test data is a good idea. For example, a common issue is that the test
set is missing certain class labels if the dataset was not shuffled properly before
splitting it into training and test data. For small tabular datasets, it is also feasible

to compare feature distributions in the training and test sets using histograms.
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Looking at feature distributions is a good approach for tabular data, but this is
trickier for image and text data. A relatively easy and more general approach to

check for discrepancies between training and test sets is adversarial validation.
Adversarial validation , illustrated in

Training set
Features Label
2

label
Combined set New labe

- 0
Original dataset / 1 Features  |ls test?

Features |ls test? 0 1
SR .
1 Test set 0 model
L\ Features La]bel =

1
0
2

Remove features or data points and
repeat until model has low accuracy

Figure 29.1

is a technique to identify the degree of similarity between the training and test
data. We first merge the training and test sets into a single dataset, and then we
create a binary target variable that distinguishes between training and test data.
For instance, we can use a new /s test? label where we assign the label 0 to
training data and the label 1 to test data. We then use k-fold cross-validation or
repartition the dataset into a training set and a test set and train a machine
learning model as usual. Ideally, we want the model to perform poorly, indicating
that the training and test data distributions are similar. On the other hand, if the
model performs well in predicting the /s test? label, it suggests a discrepancy

between the training and test data that we need to investigate further.
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What mitigation techniques should we use if we detect a training-test set
discrepancy using adversarial validation? If we're working with a tabular dataset,
we can remove features one at a time to see if this helps address the issue, as
spurious features can sometimes be highly correlated with the target variable. To
implement this strategy, we can use sequential feature selection algorithms with
an updated objective. For example, instead of maximizing classification accuracy,
we can minimize classification accuracy. For cases where removing features is not
so trivial (such as with image and text data), we can also investigate whether
removing individual training instances that are different from the test set can

address the discrepancy issue.

MRBAWERAXSAIHEALWENNG-MRRESR, BAROXERT A EBER
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TERACDRERE, MBRIVESRERE, WTFEEMNXELE,
BB UARE S HERS WRKA RN FI B E R TFRERER R

&,

Exercises

29-1. What is a good performance baseline for the adversarial prediction task?

29-2. Since training datasets are often bigger than test datasets, adversarial
validation often results in an imbalanced prediction problem (with a majority of
examples labeled as /s test? being false instead of true). Is this an issue, and if so,

how can we mitigate that?
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Chapter 30: Limited Labeled Data

Suppose we plot a learning curve (as shown in Figure 5.1 on page , for example)
and find the machine learning model overfits and could benefit from more
training data. What are some different approaches for dealing with limited

labeled data in supervised machine learning settings?

F L% (Learning Curve) EAH23F PR IHGHREMEEERIZGEUES
TBBNER, EBERTCHRERSFEIMSHRIUSEE,

In lieu of collecting more data, there are several methods related to regular
supervised learning that we can use to improve model performance in limited

labeled data regimes.

| mrwsEsKE, FaNmEE BFRHTEREARIIRREE.

Improving Model Performance with
Limited Labeled Data

The following sections explore various machine learning paradigms that help in

scenarios where training data is limited.

Labeling More Data

Collecting additional training examples is often the best way to improve the
performance of a model (a learning curve is a good diagnostic for this). However,
this is often not feasible in practice, because acquiring high-quality data can be
costly, computational resources and storage might be insufficient, or the data may

be hard to access.

WEREZIIZGEE, B RREREMEENRERSZE (FIMHLE 1260
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Bootstrapping the Data

Similar to the techniques for reducing overfitting discussed in Chapter [ch05], it
can be helpful to "bootstrap" the data by generating modified (augmented) or
artificial (synthetic) training examples to boost the performance of the predictive
model. Of course, improving the quality of data can also lead to the improved

predictive performance of a model, as discussed in Chapter [ch21].
5% 5 EiTiCHR/M T ISR EM, TLOBET ARSI (383E) AT
(B ZmBIxS| S EIE, LARSTMIERAMEE,

SR, REHEREMITLURSKRETNELE, W5E 21 TR,

Transfer Learning

Transfer learning describes training a model on a general dataset (for example,
ImageNet) and then fine-tuning the pretrained target dataset (for example, a

dataset consisting of different bird species), as outlined in Figure 30.1.

ERREIER T EERLBIBE (40 ImageNet) LillZRAER, A
FZMBIREIEE (FINEETRESEMMAOEBIEE) #H1THRIE, WE 1.1 FF
lj__\o

More general dataset
(such as ImageNet)

Large labeled dataset Qi” | (prefrain)
Pretrained
Target dataset model
Small labeled dataset / '
Train Il (fine-tune)

Figure 30.1

Transfer learning is usually done in the context of deep learning, where model
weights can be updated. This is in contrast to tree-based methods, since most
decision tree algorithms are nonparametric models that do not support iterative

training or parameter updates.
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Self-Supervised Learning

Similar to transfer learning, in self-supervised learning, the model is pretrained on
a different task before being fine-tuned to a target task for which only limited data
exists. However, self-supervised learning usually relies on label information that
can be directly and automatically extracted from unlabeled data. Hence, self-

supervised learning is also often called unsupervised pretraining.

S5FBFIERM, AERERIP, KREEFENES LRITNE, A5
I BRMESHTHE, MERMESRBRRNEUE.

Am, BREFIEERETIUERMTIRZEED B oHRERERS
B B, BREFIhZERN AT EEINLE.

Common examples of self-supervised learning include the next word (used in GPT,
for example) or masked word (used in BERT, for example) pretraining tasks in
language modeling, covered in more detail in Chapter [ch17]. Another intuitive
example from computer vision includes inpainting: predicting the missing part of

an image that was randomly removed, illustrated in Figure 30.2.

Predict b

Figure 30.2

For more detail on self-supervised learning, see Chapter [ch02].

Active Learning
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In active learning, illustrated in Figure 30.3, we typically involve manual labelers
or users for feedback during the learning process. However, instead of labeling the
entire dataset up front, active learning includes a prioritization scheme for
suggesting unlabeled data points for labeling to maximize the machine learning

model's performance.

TEEFEIF, WE 1.3 AR, BNEELSRFnERNAFPEIIZGIE
iR R IR,

A, SIRAMRCETRIERATR, EmZFIBE—TMMERALR, BTE
IWRARICROEIE R ITIRIC, MERAHSIZESIREAIERE.

For example, human annotator

Unlabeled dataset [

Mdchine Sl Lobeled dataset
learning model

Figure 30.3

The term active learning refers to the fact that the model actively selects data for
labeling. For example, the simplest form of active learning selects data points with
high prediction uncertainty for labeling by a human annotator (also referred to as

an oracle).

Few-Shot Learning

Ina few-shot learning scenario, we often deal with extremely small datasets
that include only a handful of examples per class. In research contexts, 1-shot(one
example per class) and 5-shot (five examples per class) learning scenarios are very
common. An extreme case of few-shot learning is zero-shot learning, where no
labels are provided. Popular examples of zero-shot learning include GPT-3 and
related language models, where the user has to provide all the necessary

information via the input prompt, as illustrated in Figure 30.4.

EOERZIGRP, BRITEELEESETERINRFIERMINRIRE
Mo

#5229 7, 3239

b=

M


https://github.com/ningg/Machine-Learning-Q-and-AI

2025/7/20 20226 | KAEBIEAR30YE (ER&H ST | https:/ningg top/Machine-Learning-Q-and-Al/
FERRLETXH, 1-shot (BPEB—PRHFI) HM5-shot (BTEINANT
#l) ZIHEEEER.
INERZIINMIRTER, EFHFESRES), HPRBFRMHEInE,

FRHAZIINRTTREIEHE GPT-3 MAXIESRE, HPBFLFEIHA
RTRHFABLEES, WE 1.4 FiE.

Zero-shot classification with ChatGPT

For more detail on few-shot learning, see Chapter [ch03].

Meta-Learning

Meta-learning involves developing methods that determine how machine learning
algorithms can best learn from data. We can therefore think of meta-learning as
"learning to learn."? The machine learning community has developed several
approaches for meta-learning. Within the machine learning community, the term
meta-learning doesn't just represent multiple subcategories and approaches; it is
also occasionally employed to describe related yet distinct processes, leading to

nuances in its interpretation and application.

Meta-learning is one of the main subcategories of few-shot learning. Here, the
focus is on learning a good feature extraction module, which converts support and
query images into vector representations. These vector representations are
optimized for determining the predicted class of the query example via
comparisons with the training examples in the support set. (This form of meta-
learning is illustrated in Chapter [ch03] on page .) Another branch of meta-
learning unrelated to the few-shot learning approach is focused on extracting
metadata (also called meta-features) from datasets for supervised learning tasks,
as illustrated in Figure 30.5. The meta-features are descriptions of the dataset
itself. For example, these can include the number of features and statistics of the

different features (kurtosis, range, mean, and so on).
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Figure 30.5

The extracted meta-features provide information for selecting a machine learning
algorithm for the dataset at hand. Using this approach, we can narrow down the
algorithm and hyperparameter search spaces, which helps reduce overfitting

when the dataset is small.

Weakly Supervised Learning

Weakly supervised learning, illustrated in Figure 30.6, involves using an external
label source to generate labels for an unlabeled dataset. Often, the labels created
by a weakly supervised labeling function are more noisy or inaccurate than those
produced by a human or domain expert, hence the term weakly supervised. We
can develop or adopt a rule-based classifier to create the labels in weakly
supervised learning; these rules usually cover only a subset of the unlabeled

dataset.

(1) Unlabeled dataset (2) Apply label functions
o) o~
2
§ o o O O , *?—) o (@] m
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0o ° o o %
Feature 1 Feature 1 i
]
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2 s = * Kk «— 2 o /* %
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[ ] * () " o)
m /X% * o * %
Feature 1 Feature 1 i
{4) Train and apply classifier (3) Obtain weakly labeled dataset
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Figure 30.6

Let'sreturntotheexampleofemailspamclassificationfromChapter [ch23] to illustrate
a rule-based approach for data labeling. In weak supervision, we could design a
rule-based classifier based on the keyword SALE in the email subject header line
to identify a subset of spam emails. Note that while we may use this rule to label
certain emails as spam positive, we should not apply this rule to label emails
without SALE as non-spam. Instead, we should either leave those unlabeled or

apply a different rule to them.

There is a subcategory of weakly supervised learning referred to as PU-learning. In
PU-learning, which is short for positive-unlabeled learning, we label and learn

only from positive examples.

Semi-Supervised Learning

Semi-supervised learning is closely related to weakly supervised learning: it also
involves creating labels for unlabeled instances in the dataset. The main
difference between these two methods lies in how we create the labels. In weak
supervision, we create labels using an external labeling function that is often
noisy, inaccurate, or covers only a subset of the data. In semi-supervision, we do
not use an external label function; instead, we leverage the structure of the data
itself. We can, for example, label additional data points based on the density of

neighboring labeled data points, as illustrated in Figure 30.7.

4
~| o © o * ~ g™ O *
g a " *x O . g m T * X
8|0 o % Sl m x
m %o o m %0 o
Feature 1 " Feature 1 ]

Figure 30.7

While we can apply weak supervision to an entirely unlabeled dataset, semi-
supervised learning requires at least a portion of the data to be labeled. In
practice, it is possible first to apply weak supervision to label a subset of the data
and then to use semi-supervised learning to label instances that were not

captured by the labeling functions.
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Thanks to their close relationship, semi-supervised learning is sometimes referred

to as a subcategory of weakly supervised learning, and vice versa.

Self-Training

Self-training falls somewhere between semi-supervised learning and weakly
supervised learning. For this technique, we train a model to label the dataset or
adopt an existing model to do the same. This model is also referred to as a

pseudo-labeler.

Self-training does not guarantee accurate labels and is thus related to weakly
supervised learning. Moreover, while we use or adopt a machine learning model

for this pseudo-labeling, self-training is also related to semi-supervised learning.

An example of self-training is knowledge distillation, discussed in Chapter [ch06].

Multi-Task Learning

Multi-task learning trains neural networks on multiple, ideally related tasks. For

example, if we are training a classifier to detect spam emails, spam classification
is the main task. In multi-task learning, we can add one or more related tasks for
the model to solve, referred to as auxiliary tasks. For the spam email example, an

auxiliary task could be classifying the email's topic or language.

Typically, multi-task learning is implemented via multiple loss functions that have
to be optimized simultaneously, with one loss function for each task. The auxiliary
tasks serve as an inductive bias, guiding the model to prioritize hypotheses that
can explain multiple tasks. This approach often results in models that perform
better on unseen data. There are two subcategories of multi-task learning: multi-
task learning with hard parameter sharing and multi-task learning with soft
parameter sharing. Figure 30.8 illustrates the difference between these two

methods.
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Hard parameter sharing Soft parameter sharing
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I I~ Constraints for soft
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Input data—>| |[>| |> = l - Task 2
Figure 30.8

In hard parameter sharing, as shown in Figure 30.8, only the output layers are
task specific, while all the tasks share the same hidden layers and neural network
backbone architecture. In contrast, soft parameter sharing uses separate neural
networks for each task, but regularization techniques such as distance
minimization between parameter layers are applied to encourage similarity

among the networks.

Multimodal Learning

While multi-task learning involves training a model with multiple tasks and loss
functions, multimodal learning focuses on incorporating multiple types of input

data.

Common examples of multimodal learning are architectures that take both image
and text data as input (though multimodal learning is not restricted to only two
modalities and can be used for any number of input modalities). Depending on
the task, we may employ a matching loss that forces the embedding vectors
between related images and text to be similar, as shown in Figure 30.9. (See

Chapter [ch01] for more on embedding vectors.)
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Image-language matching loss
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Figure 30.9

Figure 30.9 shows image and text encoders as separate components. The image
encoder can be a convolutional backbone or a vision transformer, and the
language encoder can be a recurrent neural network or language transformer.
However, it's common nowadays to use a single transformer-based module that
can simultaneously process image and text data. For example, the VideoBERT
model has a joint module that processes both video and text for action

classification and video captioning.

Optimizing a matching loss, as shown in Figure 30.9, can be useful for learning
embeddings that can be applied to various tasks, such as image classification or
summarization. However, it is also possible to directly optimize the target loss,

like classification or regression, as Figure 30.10 illustrates.

Classification/regression loss

f
Concatenated embedding

Embedding Embedding
1

t f
t t

Information from Information from
sensor | sensor 2

Figure 30.10
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Figure 30.10 shows data being collected from two different sensors. One could be
a thermometer and the other could be a video camera. The signal encoders
convert the information into embeddings (sharing the same number of
dimensions), which are then concatenated to form the input representation for

the model.

Intuitively, models that combine data from different modalities generally perform
better than unimodal models because they can leverage more information.
Moreover, recent research suggests that the key to the sucess of multimodal

learning is the improved quality of the latent space representation.

Inductive Biases

Choosing models with stronger inductive biases can help lower data requirements
by making assumptions about the structure of the data. For example, due to their
inductive biases, convolutional networks require less data than vision

transformers, as discussed in Chapter [ch13].

Recommendations

Of all these techniques for reducing data requirements, how should we decide

which ones to use in a given situation?

Techniques like collecting more data, data augmentation, and feature engineering
are compatible with all the methods discussed in this chapter. Multi-task learning
and multimodal inputs can also be used with the learning strategies outlined
here. If the model suffers from overfitting, we should also include techniques
discussed in Chapters [ch05] and [ch06].

But how can we choose between active learning, few-shot learning, transfer
learning, self-supervised learning, semi-supervised learning, and weakly
supervised learning? Deciding which supervised learning technique(s) to try is
highly context dependent. You can use the diagram in Figure 30.11 as a guide to

choosing the best method for your particular project.
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Note that the dark boxes in Figure 30.11 are not terminal nodes but arc back to
the second box, "Evaluate model performance"?; additional arrows were omitted

to avoid visual clutter.

Exercises

30-1. Suppose we are given the task of constructing a machine learning model
that utilizes images to detect manufacturing defects on the outer shells of tablet
devices similar to iPads. We have access to millions of images of various
computing devices, including smartphones, tablets, and computers, which are not

labeled; thousands of labeled pictures of smartphones depicting various types of
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damage; and hundreds of labeled images specifically related to the target task of
detecting manufacturing defects on tablet devices. How could we approach this

problem using self-supervised learning or transfer learning?

30-2. In active learning, selecting difficult examples for human inspection and
labeling is often based on confidence scores. Neural networks can provide such
scores by using the logistic sigmoid or softmax function in the output layer to

calculate class-membership probabilities. However, it is widely recognized that

deep neural networks exhibit overconfidence on out-of-distribution data,

rendering their use in active learning ineffective. What are some other methods to

obtain confidence scores using deep neural networks for active learning?

References

While decision trees for incremental learning are not commonly implemented,
algorithms for training decision trees in an itera- tive fashion do exist:

https://en.wikipedia.org/wiki/Incremental _decision tree.

Models trained with multi-task learning often outperform models trained on a
single task: Rich Caruana, "Multitask Learning"? (1997),
https://doi.org/10.1023%2FA%3A1007379606734.

A single transformer-based module that can simultaneously process image
and text data: Chen Sun et al., "VideoBERT: A Joint Model for Video and
Language Representation Learning"? (2019), https://arxiv.org/abs/1904.01766.

The aforementioned research suggesting the key to the success of multimodal
learning is the improved quality of the latent space representation: Yu Huang
et al., "What Makes Multi-Modal Learning Better Than Single (Provably)"?
(2021), https://arxiv.org/abs/2106.04538.

For more information on active learning: Zhen et al., "A Comparative Survey of
Deep Active Learning"? (2022), https://arxiv.org/abs/2203.13450.

For a more detailed discussion on how out-of-distribution data can lead to
overconfidence in deep neural networks: Anh Nguyen, Jason Yosinski, and Jeff
Clune, "Deep Neural Networks Are Easily Fooled: High Confidence Predictions

for Unrecognizable Images"? (2014), https://arxiv.org/abs/1412.1897.
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